4.8 Article

Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2021.110938

关键词

CO2 reduction; Paris agreement; Climate neutrality; Renewable energy; International comparison; Carbon lock-in

资金

  1. Swedish Energy Agency

向作者/读者索取更多资源

Global steel production currently relies on coal, but with declining costs of renewable electricity and unrealized carbon capture and storage, electricity- and hydrogen-based steel production is gaining momentum. While some countries are implementing long-term CO2 reduction targets, there is still a lack of demanding medium-term targets affecting coal-based steel production.
Global steel production is currently dependent on coal and capital-intensive production facilities with long economic lifetimes. While the Paris Agreement means carbon neutrality must be reached globally by 2050-2070, with negative emissions thereafter, coal-based steel production today accounts for around 8% of global energy related CO2 emissions. Its production may stabilize or even decline in industrialized countries, but it will increase significantly in the emerging economies. In the past, the focus of CO2 reduction for steel has been on moderate emissions reductions through energy efficiency measures and on exploring carbon capture and storage. However, as (1) the cost of renewable electricity is declining rapidly, (2) carbon capture and storage has not materialized yet, and (3) and more and more countries set deep emission reduction targets, electricity- and hydrogen-based steel making has gathered substantial momentum over the past half-decade. Given the short time frame and the sector's deep carbon lock-in, there is an urgent need to understand the national climate and energy policy as well as the current implementation of low-CO2 and renewable electricity that would enable a shift from coal-based to electricity-based steel making. In this paper, we first identify the countries that are likely to be major steel producers in the future and thus major CO2-emitters. Then we map medium- and long-term CO2 reduction and renewable targets as well as the current share of low-CO2 and renewable electricity by country. Based on these data, we develop a set of indicators that map the readiness of steel-producing countries for a sustainable transition. Our findings show that although binding long-term CO2 reduction targets are being implemented, medium-term CO2 reduction do not yet affect coal based steel production. Overall, the global steel industry seems not be on track yet, though differences between steel producing countries are large. Common shortcomings across countries are a lack of access to renewable electricity and a lack of demanding medium-term CO2 reduction targets. The paper ends with recommendations on how to enable a low-carbon transition of the global steel industry in line with the Paris Agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Green & Sustainable Science & Technology

Assessment of hydrogen direct reduction for fossil-free steelmaking

Valentin Vogl, Max Ahman, Lars J. Nilsson

JOURNAL OF CLEANER PRODUCTION (2018)

Article Green & Sustainable Science & Technology

Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study

Duncan Kushnir, Teis Hansen, Valentin Vogl, Max Ahman

JOURNAL OF CLEANER PRODUCTION (2020)

Article Environmental Studies

An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions

Lars J. Nilsson, Fredric Bauer, Max Ahman, Fredrik N. G. Andersson, Chris Bataille, Stephane de la Rue du Can, Karin Ericsson, Teis Hansen, Bengt Johansson, Stefan Lechtenbohmer, Mariesse van Sluisveld, Valentin Vogl

Summary: The target of zero emissions sets a new standard for industry and industrial policy, requiring profound technological and organizational changes. Industrial transformation, from technology R&D to market reshaping and governance capacity enhancement, will play a key role in international climate policy and negotiations.

CLIMATE POLICY (2021)

Article Chemistry, Physical

Phasing out the blast furnace to meet global climate targets

Valentin Vogl, Olle Olsson, Bjorn Nykvist

Summary: Iron and steel production accounts for 7% of global greenhouse gas emissions. Previous studies have found that the long lifespan of steel production equipment hinders decarbonization efforts. However, estimates show that the emissions from current primary steel equipment are significantly lower than previously thought. Future emissions from steel production will depend on the adoption of new technologies, renewable energy sources, and decreases in steel and energy demand.
Editorial Material Multidisciplinary Sciences

How trade policy can support the climate agenda

Michael Jakob, Stavros Ationis, Max Ahman, Angelo Antoci, Marlene Arens, Fernando Ascensao, Harro van Asselt, Nicolai Baumert, Simone Borghesi, Claire Brunel, Justin Caron, Aaron Cosbey, Susanne Droege, Alecia Evans, Gianluca Iannucci, Magnus Jiborn, Astrid Kander, Viktoras Kulionis, Arik Levinson, Jaime de Melo, Tom Moerenhout, Alessandro Monti, Maria Panezi, Philippe Quirion, Lutz Sager, Marco Sakai, Juan Sesmero, Mauro Sodini, Jean-Marc Solleder, Cleo Verkuijl, Valentin Vogl, Leonie Wenz, Sven Willner

SCIENCE (2022)

Article Environmental Studies

The making of green steel in the EU: a policy evaluation for the early commercialization phase

Valentin Vogl, Max Ahman, Lars J. Nilsson

Summary: Carbon contracts for difference are the most promising policy instrument to commercialize low-emission primary steel but are likely to lead to unequal distribution of transition costs. Market creation policies can support the global diffusion of low-emission primary steelmaking. Material efficiency and demand reduction can reduce the need for primary steel production by more than 50%.

CLIMATE POLICY (2021)

Article Green & Sustainable Science & Technology

3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service

M. Genovese, F. Piraino, P. Fragiacomo

Summary: This research proposes the concept of a hydrogen valley in southern Italy, where hydrogen is produced centrally and delivered via fuel cell hybrid trains to refueling stations, providing transportation services. The analysis from both technical and economic perspectives shows that the cost of hydrogen and energy efficiency reached competitive levels, and hydrogen rail transport offers significant benefits in terms of emissions reduction and economic gains compared to conventional diesel trains and fully electric trains.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation

Miaomiao Liu, Payam Nejat, Pinlu Cao, Carlos Jimenez-Bescos, John Kaiser Calautit

Summary: This article provides a critical review of the performance of windcatchers, pointing out the current research gaps and issues, and proposing directions for further investigation and market prospects.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations

Solomon Boadu, Ebenezer Otoo

Summary: Despite Africa's vast energy resources, including wind energy, the continent faces challenges in developing its wind energy industry. Northern African countries and South Africa currently dominate the wind energy sector in Africa. To uplift Africa's socio-economic status, strong political will, supportive policies, and institutional frameworks are needed to drive the development of wind energy and overcome existing challenges.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

Optimized agrivoltaic tracking for nearly-full commodity crop and energy production

E. K. Grubbs, S. M. Gruss, V. Z. Schull, M. J. Gosney, M. V. Mickelbart, S. Brouder, M. W. Gitau, P. Bermel, M. R. Tuinstra, R. Agrawal

Summary: As the global population grows, the demand for food, energy, and water will increase significantly. However, limited land availability and competition for solar resources pose challenges to resource generation technologies. In the United States, both agriculture and solar energy production have adopted densification schemes to improve yields and energy output per unit of land. This research proposes an Agrivoltaic food and energy coproduction architecture that optimizes power generation while maintaining crop productivity by implementing ideal anti-tracking during critical growth periods. This technology offers a viable pathway for widespread solar implementation throughout the contiguous United States.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

Power quality monitoring in electric grid integrating offshore wind energy: A review

Han Shao, Rui Henriques, Hugo Morais, Elisabetta Tedeschi

Summary: The integration of offshore wind energy into the electric grid provides opportunities in terms of environmental sustainability and cost efficiency, but poses challenges to power quality. This survey offers a deeper understanding of disturbance detection and classification tools, exploring root causes, disturbance locations, and algorithmic solutions. It highlights synchronized waveform measurement and discusses evaluation metrics for detection and classification algorithms. Additionally, a novel system-wide monitoring framework is proposed.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches

Eleni Davidson, Yair Schwartz, Joe Williams, Dejan Mumovic

Summary: A continued upward trend in global greenhouse gas emissions poses risks to global infrastructure and built assets. Maintaining high indoor environmental quality standards is a challenge for higher education institutions under future climates. Passive cooling mechanisms may be insufficient to tolerate predicted temperature increases. Different building typologies have varying energy demand projections.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

Long-term microgrid expansion planning with resilience and environmental benefits using deep reinforcement learning

Kexin Pang, Jian Zhou, Stamatis Tsianikas, David W. Coit, Yizhong Ma

Summary: This study proposes a new framework for long-term microgrid expansion planning, using deep reinforcement learning method to consider various uncertainties and constraints. The framework aims to enhance the effectiveness of microgrid expansion planning from the perspectives of economy, resilience, and greenhouse gas emission reduction.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

How does energy poverty eradication affect global carbon neutrality?

Jun Zhao, Kangyin Dong, Xiucheng Dong

Summary: The continuous growth of global electricity penetration has provided modern energy for alleviating energy poverty, but its impact on carbon neutrality has been overlooked. The research reveals that clean electricity from traditional fossil energy and renewable energy has a positive influence on the greenhouse effect. Eradicating energy poverty can effectively alleviate the greenhouse effect, especially in non-Belt and Road Initiative (B&RI) nations.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

Biomass to biofuels using hydrothermal liquefaction: A comprehensive review

Hossein Shahbeik, Hamed Kazemi Shariat Panahi, Mona Dehhaghi, Gilles J. Guillemin, Alireza Fallahi, Homa Hosseinzadeh-Bandbafha, Hamid Amiri, Mohammad Rehan, Deepak Raikwar, Hannes Latine, Bruno Pandalone, Benyamin Khoshnevisan, Christian Sonne, Luigi Vaccaro, Abdul-Sattar Nizami, Vijai Kumar Gupta, Su Shiung Lam, Junting Pan, Rafael Luque, Bert Sels, Wanxi Peng, Meisam Tabatabaei, Mortaza Aghbashlo

Summary: This review explores the production of biocrude oil from biomass feedstocks through the process of hydrothermal liquefaction (HTL). It discusses the impact of process parameters on the quality, quantity, cost, and environmental impacts of biofuels. The review also highlights the challenges and prospects for the future development of biocrude oil.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

Marine energy digitalization digital twin's approaches

Meysam Majidi Nezhad, Mehdi Neshat, Georgios Sylaios, Davide Astiaso Garcia

Summary: Digital twins promise innovation for the marine renewable energy sector by using modern technological advances and the existing maritime knowledge frameworks. This research presents critical aspects of digital twin implementation challenges in marine energy digitalization approaches that use and combine data systems.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

Multi-area economic dispatch problem: Methods, uncertainties, and future directions

Yeganeh Sharifian, Hamdi Abdi

Summary: This paper discusses the background and objectives of the multi-area economic dispatch problem, as well as various techniques and methods applied in this field. It also covers comprehensive formulations of the problem and important issues in the field of probabilistic MAED, along with some related concepts and suggestions.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

A review on the production and application of tall oil with a focus on sustainable fuels

J. G. B. Churchill, V. B. Borugadda, A. K. Dalai

Summary: The increasing global energy demand and the need to reduce fossil fuel reliance have created a demand for renewable and sustainable fuel sources. This review explores the potential of tall oil, a by-product of the pulping industry, as a feedstock for biofuels. The review provides an overview of tall oil production, purification, and treatment, and investigates recent trends and barriers towards tall oil-derived biofuels.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

District cooling services: A bibliometric review and topic classification of existing research

David C. Broadstock, Xiangnan Wang

Summary: This study provides a general review of research on district cooling, identifying key topics and themes and highlighting potential research priorities for future studies.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Article Green & Sustainable Science & Technology

Barriers to demand response in the commercial and industrial sectors - An empirical investigation

L. Scharnhorst, D. Sloot, N. Lehmann, A. Ardone, W. Fichtner

Summary: This study investigates and analyzes the barriers to demand response in industrial and commercial sectors, highlighting their significance. Concerns about diminished product quality, disruptions to production processes, human resource management, and revenue uncertainty are identified as the most frequently cited barriers. Overcoming these barriers requires bridging knowledge gaps, allocating sufficient resources, and adapting external incentives and policies.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)

Review Green & Sustainable Science & Technology

Air pollution control policies and impacts: A review

Tong Feng, Yuechi Sun, Yating Shi, Jie Ma, Chunmei Feng, Zhenni Chen

Summary: Air pollution is a significant global challenge, and policymakers have implemented policies to reduce it. Evaluating the effectiveness of these policies is critical, and our study reveals trends and gaps in air pollution policy research. We found that research has shifted from focusing solely on air pollutants to including methodologies, policies, and health implications. China has emerged as a major contributor in this field of research.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2024)