4.7 Article

Hydrogen-air explosion with concentration gradients in a cubic enclosure

期刊

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
卷 151, 期 -, 页码 141-150

出版社

ELSEVIER
DOI: 10.1016/j.psep.2021.05.003

关键词

Hydrogen safety; Concentration gradient; Flame shape; Overpressure; Deflagration

资金

  1. National Key R&D Program of China [2019YFB1505301]
  2. Fundamental Research Funds for the Central Universities of China [PA2020GDGP0052]
  3. Science, Technology and Innovation Commission of Shenzhen Municipality [GCZX2018020920405505]

向作者/读者索取更多资源

The study investigated the effects of different hydrogen concentration gradients on flame behavior and overpressure, revealing that for fuel-lean hydrogen-air mixtures, the maximum overpressure in homogeneous mixtures is larger than that in inhomogeneous mixtures, while the opposite is true for fuel-rich mixtures.
An inhomogeneous hydrogen-air mixture is induced once hydrogen leakage occurs, and an explosion may be triggered due to an accidental ignition with sufficient strength. The effects of different hydrogen concentration gradients on flame behavior and overpressure were experimentally investigated in a closed cubic vessel with a volume of 0.125 m3. The transverse concentration gradients of hydrogen injected from the top face of the vessel were recorded using five oxygen sensors. A high-speed photography was employed to capture the flame shape evolution and the flame tip velocity was derived. Three piezoelectric pressure transducers were mounted on the top and side walls to measure the pressuretime profiles. The results show that the maximum overpressure in homogeneous mixtures is larger than that in inhomogeneous mixtures for fuel-lean hydrogen-air mixtures. However, the maximum overpressure in inhomogeneous mixtures is equal to or larger than that in homogeneous mixtures for fuel-rich hydrogen-air mixtures. Due to a larger difference between the upward and downward flame speeds, a mushroom-like shape flame was recorded in inhomogeneous hydrogen-air mixtures in fuellean to slightly fuel-rich hydrogen-air mixtures. The flame speed in two directions has the almost same value in inhomogeneous fuel-richer mixtures. The average flame speed in inhomogeneous mixtures is significantly larger than that in homogeneous mixtures for fuel-rich hydrogen air mixtures. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据