4.6 Article

Feasibility of deuterium magnetic resonance spectroscopy of 3-O-Methylglucose at 7 Tesla

期刊

PLOS ONE
卷 16, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0252935

关键词

-

向作者/读者索取更多资源

Deuterium Magnetic Resonance Spectroscopy (DMRS) is a non-invasive technique that allows the detection of deuterated compounds in vivo, offering great potential in analyzing uptake, perfusion, washout or metabolism. This study performed DMRS of deuterated 3-O-Methylglucose (OMG) and demonstrated the feasibility of using DMRS with deuterium labelled OMG. The data obtained may serve as a basis for future studies characterizing glucose transport using DMRS.
Deuterium Magnetic Resonance Spectroscopy (DMRS) is a non-invasive technique that allows the detection of deuterated compounds in vivo. DMRS has a large potential to analyze uptake, perfusion, washout or metabolism, since deuterium is a stable isotope and therefore does not decay during biologic processing of a deuterium labelled substance. Moreover, DMRS allows the distinction between different deuterated substances. In this work, we performed DMRS of deuterated 3-O-Methylglucose (OMG). OMG is a non-metabolizable glucose analog which is transported similar to D-glucose. DMRS of OMG was performed in phantom and in vivo measurements using a preclinical 7 Tesla MRI system. The chemical shift (3.51 +/- 0.1 ppm) and relaxation times were determined. OMG was injected intravenously and spectra were acquired over a period of one hour to monitor the time evolution of the deuterium signal in tumor-bearing rats. The increase and washout of OMG could be observed. Three different exponential functions were compared in terms of how well they describe the OMG washout. A mono-exponential model with offset seems to describe the observed time course best with a time constant of 1910 +/- 770 s and an offset of 2.5 +/- 1.2 mmol/l (mean +/- std, N = 3). Chemical shift imaging could be performed with a voxel size of 7.1 mm x 7.1 mm x 7.9 mm. The feasibility of DMRS with deuterium labelled OMG could be demonstrated. These data might serve as basis for future studies that aim to characterize glucose transport using DMRS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据