4.6 Article

Machine learning for manually-measured water quality prediction in fish farming

期刊

PLOS ONE
卷 16, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0256380

关键词

-

资金

  1. Ministry of Science, Technology, and Innovation
  2. Universidad de los Andes through Convocatoria de Regionalizacion
  3. Universidad de los Andes

向作者/读者索取更多资源

This study examines the use of machine learning techniques to analyze water quality variables data in fish farming with limited measurements, proposes methods for building models, confirms the effectiveness of random forests for predicting commonly measured water quality variables in fish farming, and demonstrates that the models can be implemented to run on smartphones that fish farmers can afford.
Monitoring variables such as dissolved oxygen, pH, and pond temperature is a key aspect of high-quality fish farming. Machine learning (ML) techniques have been proposed to model the dynamics of such variables to improve the fish farmer's decision-making. Most of the research on ML in aquaculture has focused on scenarios where devices for real-time data acquisition, storage, and remote monitoring are available, making it easy to develop accurate ML techniques. However, fish farmers do not necessarily have access to such devices. Many of them prefer to use equipment to manually measure these variables limiting the amount of available data to process. In this work, we study the use of random forests, multivariate linear regression, and artificial neural networks in scenarios with limited amount of measurements to analyze data from water-quality variables that are commonly measured in fish farming. We propose a methodology to build models in two scenarios: i) estimation of unobserved variables based on the observed ones, and ii) forecasting when a low amount of data is available for training. We show that random forests can be used to forecast dissolved oxygen, pond temperature, pH, ammonia, and ammonium when the water pond variables are measured only twice per day. Moreover, we showed that these prediction models can be implemented on a mobile-based information system and run in an average smartphone that fish farmers can afford.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据