4.8 Article

Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits

期刊

PHYSICAL REVIEW LETTERS
卷 127, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.127.080505

关键词

-

向作者/读者索取更多资源

The article introduces a modified tunable bus architecture suitable for fixed-frequency qubits, achieving high-fidelity 2-qubit operations. Experimental results demonstrate a maximum gate fidelity of 99.85% with good calibration stability over one day.
Implementation of high-fidelity 2-qubit operations is a key ingredient for scalable quantum error correction. In superconducting qubit architectures, tunable buses have been explored as a means to higher-fidelity gates. However, these buses introduce new pathways for leakage. Here we present a modified tunable bus architecture appropriate for fixed-frequency qubits in which the adiabaticity restrictions on gate speed are reduced. We characterize this coupler on a range of 2-qubit devices, achieving a maximum gate fidelity of 99.85%. We further show the calibration is stable over one day.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据