4.8 Article

Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery

期刊

NANO TODAY
卷 38, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2021.101151

关键词

Graphene oxide; Lung targeting delivery; Polyvinylpyrrolidone functionalization; Elastic; deformable property

资金

  1. National Basic Research Program of China [2016YFA0201600]
  2. National Natural Science Foundation of China [11875268, 11775234, 31971311, 11975251]

向作者/读者索取更多资源

This study demonstrated the advantages of GO-PVP retention in the lung, with good dispersion and deformable structure that contribute to its retention in the alveolar region and interstitium.
Nanomaterials (NMs) as lung-targeted drug delivery vehicles have attracted great attentions. Recent studies indicated that elastic or deformable property of NMs could play a vital role in biomedical applications. Herein, polyvinylpyrrolidone (PVP) functionalized graphene oxide (GO-PVP) via a facile one-pot method and PEGylated GO (GO-PEG) nanosheets (NSs) were synthesized at room temperature. By using rare earth elemental labeling method, we quantitatively revealed that GO-PVP NSs were targeting retention in the lung that after 4 h intravenous injection, the lung/liver and lung/spleen ratios in GO-PVP treated mice were about 230-fold and 30-fold higher of those in GO-PEG treated mice, respectively, especially a considerable amount was retained in the lower respiratory tract including pulmonary interstitium and alveolar region as fibril-like shapes. The florescence imaging and in situ confocal Raman microscopy combining with laser -ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) elemental imaging analysis further confirmed that a more amount of GO-PVP than GO-PEG retention in the pulmonary interstitium. Utilizing atomic force microscopy PeakForce quantitative nanomechanical mapping technique, the nanomechanical property investigation shows that GO-PVP NSs are softer, more adhesive and deformable than GO-PEG NSs. Further, the molecular dynamics simulations illustrate that GO-PVP has deformable structure due to the hydrogen-bond interaction at basal plane between PVP and GO that cause GO-PVP surface roughness and to possess low solvent accessible surface area (SASA), comparatively, the GO-PEG owns relatively firm structure and higher SASA. This study indicates that the well dispersion property and deformable structure of GO-PVP in the lung contribute to its filtration of the endothelial/epithelial barrier and retention in the interstitium and alveolar region. Importantly, the study inspires us to design elastic or deformable NMs in response to the lung disease especially those have occurred in the lower respiratory tract.& nbsp; (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据