4.7 Article

The effect of pulse current changes in PCGTAW on microstructural evolution, drastic improvement in mechanical properties, and fracture mode of dissimilar welded joint of AISI 316L-AISI 310S stainless steels

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2021.141700

关键词

Austenitic stainless steels; PCGTAW process; Microstructural evolution; Mechanical properties; Fracture mode; Weld joint of dissimilar

向作者/读者索取更多资源

This study investigated the effect of pulse current changes in Pulsed Current Gas Tungsten Arc Welding on dissimilar welding properties of AISI 316L-AISI 310S stainless steels. By adjusting the welding parameters, changes in microstructure and mechanical properties of the weld metal were observed, leading to improved hardness and fracture energy. Through this research, it was found that modifying the pulse current can result in enhancements in the welding process.
In this paper, the effect of pulse current changes in the Pulsed Current Gas Tungsten Arc Welding (PCGTAW) on the various properties of dissimilar welding of AISI 316L-AISI 310S stainless steels was investigated. 10 mm thickness steel sheets were joined by the PCGTAW process with the background current (Ib) of 55, 70 and 85A, as well as the peak current (Ip) of 110, 130 and 150A. Then, optical microscopy (OM) and Field Emission Scanning Electron Microscopy (FE-SEM) techniques were used to study the microstructural evolution in different areas of the welded joints. Also, tensile, Charpy impact and Vickers microhardness tests were used to evaluate the effect of the pulsed current changes on mechanical properties. Finally, the fracture surfaces of Charpy impact and tensile tests samples were studied by FE-SEM. The weld metal (WM) microstructure consisted of austenite dendrites together with a low amount of delta ferrite in the grain-boundaries. Results also showed that by increasing Ib and decreasing Ip, the microstructure of the WM was changed from columnar dendritic to coaxial, and a very fine, dendritic one. This condition led to the reduction of the size of the dendrites and the amount of delta ferrite ingrain boundaries of the WM, as well as a reduction in the width of Unmixed Zone (UMZ) area. Moreover, all the welded joints were fractured from the AISI 316L stainless steels side. However, the results of the Charpy impact and microhardness tests showed that with the above variation in the welding parameters, hardness value and fracture energy of the WM increased significantly. Fractography of the surfaces showed a completely ductile fracture for both tensile and Charpy impact tests samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据