4.8 Article

Laminar burning velocity of gases vented from failed Li-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 506, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230141

关键词

Li-ion explosion hazard; Combustion properties; Safety; Vented Li-ion gas; Laminar burning velocity; Reaction mechanisms

资金

  1. Research Council of Norway [257653]

向作者/读者索取更多资源

The study investigates the laminar burning velocity of gas compositions associated with Li-ion battery failures, ranging from 300 to 1050 mm/s, and the accuracy of different reaction models in predicting these velocities. The results can be used in safety engineering models and provide recommendations for choosing reaction models to predict burning velocities for various gas compositions.
In the last decade, several fires and explosions caused by Li-ion batteries (LIBs) have been reported. This can be attributed to the thermal runaway and catastrophic failures of LIBs that release combustible gases, which when mixed with air can lead to explosions and fires. To address this explosion hazard, we determine the laminar burning velocity (LBV) of three gas compositions associated with Li-ion failure and a pseudo (simplified) gas in a 20-L explosion sphere at 300 K and 100 kPa. This simplified gas avoids toxic gases in experiments and represent the desired explosion characteristics. The LBVs in the case of gas compositions range from approximately 300 to 1050 mm s -1. Additionally, four different reaction models are used to estimate the LBVs of these gas compositions. We compare the theoretical and experimental results to determine the prediction accuracy of the reaction models. All reaction models over- or under-predicted the LBV for the different gas compositions. A recommendation for choosing reaction models is given to predict LBV for various gas compositions. This study's results are intended as input to computational fluid dynamic simulations but can be used directly in safety engineering models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据