4.7 Article

Barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 416, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125835

关键词

Iodine; MOF; UiO-66-NH2; Adsorption; Mechanisms; Spent nuclear fuel treatment

资金

  1. National Natural Science Foundation of China [51808312]

向作者/读者索取更多资源

Efficient and stable UiO-66NH(2) adsorbents have been successfully synthesized and characterized in this study for iodine gas capture, showing high maximum iodine adsorption capacity and good performance in regeneration and reuse. Experimental results indicate the potential applicability of these new adsorbents for efficient iodine gas capture, with adsorption occurring through both physisorption and chemisorption mechanisms.
Efficient iodine gas capture is necessitated in many industries like spent nuclear fuel off-gas treatment in view of environmental protection and resource recycling. However, the adsorption efficiency and stability of the current adsorbents are limited. In the present work, efficient and stable barbituric and thiobarbituric acid-based UiO-66NH(2) adsorbents (i.e., UiO-66-NH-B.D and UiO-66-NH-T.D, respectively) have been synthesized by post-synthetic covalent modification. Characterization approaches, including SEM-EDS, TEM, XRD, FTIR, XPS, 1H NMR, TGA and BET, are used to obtain information on the properties and adsorption mechanisms of these metal-organic framework (MOF) adsorbents. The kinetics and mechanisms involved are studied in detail. The treatment efficiency and recyclability of the adsorbents are checked and compared with the adsorbents reported in previous works. The results show that the current adsorbents are potentially suitable for efficient iodine gas capture. High maximum iodine adsorption amount by UiO-66-NH-B.D and UiO-66-NH-T.D (1.17 and 1.33 g/g) was achieved under 75 degrees C. These new adsorbents are thermally stable for iodine adsorption and regenerated and reused with good performance. The adsorption mechanisms were revealed based on experimental results, indicating that iodine is adsorbed by both physisorption and chemisorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据