4.7 Article

Linear-model-based estimation in wall turbulence: improved stochastic forcing and eddy viscosity terms

期刊

JOURNAL OF FLUID MECHANICS
卷 925, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.671

关键词

turbulent boundary layers; turbulence modelling

资金

  1. National Natural Science Foundation of China [91752201, 12002147, 12050410247]
  2. Shenzhen Science and Technology Innovation Committee [KQTD20180411143441009]
  3. Department of Science and Technology of Guangdong Province [2019B21203001, 2020B1212030001]
  4. Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou [GML2019ZD0103]
  5. Centers for Mechanical Engineering Research and Education at MIT
  6. SUSTech
  7. Center for Computational Science and Engineering at SUSTech
  8. Australian Research Council

向作者/读者索取更多资源

The study uses Navier-Stokes-based linear models to estimate large-scale fluctuations at different positions in wall-bounded turbulent flows, finding that the models perform reasonably accurately when considering the variation of stochastic forcing and eddy dissipation terms with wall distance and length scale.
We use Navier-Stokes-based linear models for wall-bounded turbulent flows to estimate large-scale fluctuations at different wall-normal locations from their measurements at a single wall-normal location. In these models, we replace the nonlinear term by a combination of a stochastic forcing term and an eddy dissipation term. The stochastic forcing term plays a role in energy production by the large scales, and the eddy dissipation term plays a role in energy dissipation by the small scales. Based on the results in channel flow, we find that the models can estimate large-scale fluctuations with reasonable accuracy only when the stochastic forcing and eddy dissipation terms vary with wall distance and with the length scale of the fluctuations to be estimated. The dependence on the wall distance ensures that energy production and energy dissipation are not concentrated close to the wall but are evenly distributed across the near-wall and logarithmic regions. The dependence on the length scale of the fluctuations ensures that lower wavelength fluctuations are not excessively damped by the eddy dissipation term and hence that the dominant scales shift towards lower wavelengths towards the wall. This highlights that, on the one hand, energy extraction in wall turbulence is predominantly linear and thus physics-based linear models give reasonably accurate results. On the other hand, the absence of linearly unstable modes in wall turbulence means that the nonlinear term still plays an essential role in energy extraction and thus the modelled terms should include the observed wall distance and length scale dependencies of the nonlinear term.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据