4.7 Article

Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures

期刊

FOOD CHEMISTRY
卷 209, 期 -, 页码 256-261

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2016.04.032

关键词

Amino acid degradation; Biogenic amines; Carbonyl-amine reactions; Lipid oxidation; Maillard reaction; Strecker degradation

资金

  1. European Union (FEDER funds)
  2. Plan Nacional de I + D of the Ministerio de Economia y Competitividad of Spain [AGL2012-35627, AGL2015-68186-R]

向作者/读者索取更多资源

The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the a-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Applied

Oligomerization of reactive carbonyls in the presence of ammonia-producing compounds: A route for the production of pyridines in foods

Rosario Zamora, Cristina M. Lavado-Tena, Francisco J. Hidalgo

FOOD CHEMISTRY (2020)

Article Agriculture, Multidisciplinary

Conversion of 5-Hydroxymethylfurfural into 6-(Hydroxymethyl)pyridin-3-ol: A Pathway for the Formation of Pyridin-3-ols in Honey and Model Systems

Francisco J. Hidalgo, Cristina M. Lavado-Tena, Rosario Zamora

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2020)

Article Agriculture, Multidisciplinary

Identification of Precursors and Formation Pathway for the Heterocyclic Aromatic Amine 2-Amino-3-methylimidazo(4,5-f)quinoline (IQ)

Rosario Zamora, Cristina M. Lavado-Tena, Francisco J. Hidalgo

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2020)

Article Chemistry, Applied

Formation of 3-hydroxypyridines by lipid oxidation products in the presence of ammonia and ammonia-producing compounds

Francisco J. Hidalgo, Cristina M. Lavado-Tena, Rosario Zamora

FOOD CHEMISTRY (2020)

Article Chemistry, Applied

Reactive carbonyls and the formation of the heterocyclic aromatic amine 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ)

Rosario Zamora, Cristina M. Lavado-Tena, Francisco J. Hidalgo

FOOD CHEMISTRY (2020)

Article Chemistry, Applied

Identification of acrolein as the reactive carbonyl responsible for the formation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)

Francisco J. Hidalgo, Cristina M. Lavado-Tena, Rosario Zamora

Summary: The reaction of acrolein and creatinine was found to produce MeIQx without the need for additional reactants. A reaction pathway explaining the formation of MeIQx and other heterocyclic aromatic amines with the structure of quinoxaline was proposed. The presence of reactive carbonyls in foods was demonstrated to play a key role in the formation of HAAs.

FOOD CHEMISTRY (2021)

Article Agriculture, Multidisciplinary

Carbonyl Chemistry and the Formation of Heterocyclic Aromatic Amines with the Structure of Aminoimidazoazaarene

Francisco J. Hidalgo, Rosario Zamora

Summary: Recent studies have shown that the formation of heterocyclic aromatic amines (HAAs) is a result of specific reactive carbonyls reacting with ammonia and creatin(in)e. These carbonyl compounds, which are usually limiting reagents, have multiple origins. Therefore, inhibition of HAA formation should focus on controlling the production of these reactive carbonyls, limiting their reactivity, and promoting their trapping.

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (2022)

Article Chemistry, Applied

Carbonyl-trapping by phenolics and the inhibition of the formation of carcinogenic heterocyclic aromatic amines with the structure of aminoimidazoazaarene in beef patties

Francisco J. Hidalgo, Rosario Zamora

Summary: This study discovered that phloroglucinol is the most effective phenolic compound in reducing the formation of carcinogenic HAAs, with an inhibition rate of 76-96%. The study also identified and characterized by NMR and MS the adducts of phloroglucinol with phenylacetaldehyde and acrolein, and confirmed their formation in beef patties treated with phloroglucinol using LC-MS/MS. Immersing beef patties in apple or pear juice before cooking (>90% inhibition) and including wheat bran in the patty recipe also proved to decrease HAA formation.

FOOD CHEMISTRY (2023)

Article Chemistry, Applied

The first harmonised total diet study in Portugal: Vitamin D occurrence and intake assessment

M. Graca Dias, Elsa Vasco, Francisco Ravasco, Lufsa Oliveira

Summary: This study estimated the vitamin D intake of "adults" and "elderly" populations in Portugal using the TDS methodology. The results showed that the majority of people had inadequate vitamin D intake, well below the Dietary Reference Values.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

The digestion fates of lipids with different unsaturated levels in people with different age groups

Yanan Wang, Jiachen Shi, Yong-Jiang Xu, Chin-Ping Tan, Yuanfa Liu

Summary: This study investigates the variations in lipid digestion profiles among individuals of different ages using in vitro digestion models. The findings suggest that adults have a more comprehensive lipid digestion compared to infants, and infants tend to release shorter chain length and more saturated free fatty acids during digestion. Additionally, the particle sizes in the stomach of the elderly were consistently larger. This study enhances our understanding of how lipids with different degrees of unsaturation undergo digestion in diverse age groups.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds

Hyunjong Yu, Huisu Kim, Pahn-Shick Chang

Summary: Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, prepared without crosslinking agents, demonstrated improved mechanical strength and compactness with higher pectin concentration. It retained the emulsion at pH 2.0 and released it at pH 7.4, resulting in enhanced release of free fatty acids and improved bioaccessibility of curcumin.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

The effect of lactic acid bacteria fermentation on physicochemical properties of starch from fermented proso millet flour

Tongze Zhang, Siqi Hong, Jia-Rong Zhang, Pin-He Liu, Siyi Li, Zixian Wen, Jianwei Xiao, Guirong Zhang, Olivier Habimana, Nagendra P. Shah, Zhongquan Sui, Harold Corke

Summary: Lactic acid fermentation significantly affects the morphology and physicochemical properties of proso millet starch, including the formation of surface indentations and small pores, decrease in gelatinization temperatures, and changes in hardness and adhesiveness.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Novel competitive electrochemical impedance biosensor for the ultrasensitive detection of umami substances based on Pd/Cu-TCPP(Fe)

Liqin Kong, Feng Hong, Peng Luan, Yiping Chen, Yaoze Feng, Ming Zhu

Summary: This study presents a novel impedance biosensor using composite nanomaterials and T1R1 as a signal probe, which can competitively and ultra-sensitively detect umami intensity. The biosensor exhibits exceptional analytical performance and is suitable for food flavor evaluation.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Identification and comparison of milk fat globule membrane and whey proteins from Selle Français, Welsh pony, and Tieling Draft horse mare's milk

Kunying Lv, Yixin Yang, Qilong Li, Ran Chen, Liang Deng, Yiwei Zhang, Ning Jiang

Summary: Horse's milk, with its high nutritional value and low allergenic proteins, could be a substitute for cow's milk in infant consumption. A proteomic method was used to identify and compare milk fat globule membrane (MFGM) and whey proteins from different horse breeds. The study found differences in protein composition and functionality, which could support the development of formulas more suitable for human infants.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Phenols and saliva effect on virgin olive oil aroma release: A chemical and sensory approach

Enrique Jacobo Diaz-Montana, Helene Brignot, Ramon Aparicio-Ruiz, Thierry Thomas- Danguin, Maria Teresa Morales

Summary: Sensory perception of virgin olive oil is influenced by phenols and volatiles, which are affected by the composition of the oil and biological factors. This study investigated the effect of saliva and phenols on the release of volatiles, and found that the presence of phenols decreased the release of saturated volatiles.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Preparation and properties of pH-sensitive cationic starch nanoparticles

Wei Zhou, Rui Zhang, Zhen Cai, Fangfang Wu, Yong Hu, Chao Huang, Kun Hu, Yun Chen

Summary: Environmentally friendly and outstanding pH-responsive cationic starch nanoparticles (CSNP) were prepared from pH-sensitive starch. CSNP exhibited nanosize and regular sphere, highly free-flowing molecular chains, and demonstrated excellent pH responsiveness through multiple emulsion/demulsification transitions.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Direct seeding compromised the vitamin C content of baby vegetables and the glucosinolate content of mature vegetables in Asian leafy brassicas

Andrea Koo, Vinayak Ghate, Weibiao Zhou

Summary: This study suggests that direct seeding may negatively affect the nutritional quality of crops, causing a decrease in ascorbic acid, vitamin K, and total glucosinolate content.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis

Tonghao Du, Yazhou Xu, Xiaoyan Xu, Shijin Xiong, Linli Zhang, Biao Dong, Jinqing Huang, Tao Huang, Muyan Xiao, Tao Xiong, Mingyong Xie

Summary: This study successfully improved the ACE inhibitory activity of black sesame seeds by fermenting them with Lactobacillus Plantarum NCU116 and hydrolyzing them using acid protease. The RF-PSO model was used to predict the ACE inhibitory activity during the hydrolysis process. Eight peptides with ACE inhibitory activity were identified from fermented black sesame seed hydrolysates after separation and screening.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Exploration of digestion-resistant immunodominant epitopes in shrimp (Penaeus vannamei) allergens

Yao Liu, Songyi Lin, Kexin Liu, Shan Wang, Qiaozhen Liu, Na Sun

Summary: This study analyzed the structural changes of shrimp proteins during digestion, predicted the immunodominant epitopes, and validated their allergenicity. The results showed that shrimp proteins were degraded into peptides during digestion, but still carried IgE epitopes that trigger allergic reactions.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Effect of milling on in vitro Digestion-Induced release and bioaccessibility of active compounds in rice

Tiantian Fu, Hongwei Cao, Yu Zhang, Xiao Guan

Summary: This study investigates the impact of milling on the active components in rice, with a focus on the stability and bioaccessibility of phenols, VB1, and alpha-GABA during cooking and digestion. The findings show that milling exacerbates the instability of gamma-GABA during cooking and VB1 during digestion, and it affects the bioaccessibility of these active compounds.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Unraveling proteome changes of Sunit lamb meat in different feeding regimes and its relationship to flavor analyzed by TMT-labeled quantitative proteomic

Zhihao Yang, Yanru Hou, Min Zhang, Puxin Hou, Chang Liu, Lu Dou, Xiaoyu Chen, Lihua Zhao, Lin Su, Ye Jin

Summary: This study investigated the molecular mechanism of feeding regimes on lamb flavor by using TMT labeling combined with MS. The results showed that pasture-fed groups had higher levels of amino acids and volatile flavor substances compared to concentrate-fed groups. Additionally, several differentially abundant proteins associated with lamb flavor were identified.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage

Zixuan Xie, De Zhang, Junyu Zhu, Qianqian Luo, Jun Liu, Jingtao Zhou, Xiaoyong Wang, Yuqiong Chen, Zhi Yu, Dejiang Ni

Summary: This study investigated the acidification of aroma-enhanced black tea during storage. Analysis of non-volatile substances and organic acids using UPLC-Q-TOF/MS and HPLC revealed a decrease in soluble sugars and amino acids, while an increase in organic acids such as oxalic acid, malic acid, and quinic acid. In vitro experiments further demonstrated that the acidification is a result of the decomposition of sugars and amino acids by heating, as well as the oxidation of aromatic aldehydes. Additionally, the study showed that the taste composition of tea infusion is altered, with reduced amino acids, catechins, soluble sugars, and flavonoids. This research provides a theoretical basis for improving the quality of black tea.

FOOD CHEMISTRY (2024)

Article Chemistry, Applied

Immobilizing amyloglucosidase on inorganic hybrid nanoflowers to prepare time-temperature integrators for chilled pork quality monitoring

Lin Wang, Falai Ma, Zihan Li, Yan Zhang

Summary: This study developed time-temperature integrators based on amyloglucosidase@Cu3(PO4)2 nanoflowers for monitoring the freshness of chilled pork. The results showed that the integrators were highly reliable and accurate in predicting the quality of chilled pork.

FOOD CHEMISTRY (2024)