4.7 Article

Predicting the outcomes of management strategies for controlling invasive river fishes using individual-based models

期刊

JOURNAL OF APPLIED ECOLOGY
卷 58, 期 11, 页码 2427-2440

出版社

WILEY
DOI: 10.1111/1365-2664.13981

关键词

biological invasion; dispersal; RangeShifter; river catchment; simulation model

资金

  1. Natural Environment Research Council [NE/R008817/1]
  2. Environment Agency
  3. Newton Fund [NE/S011641/1]
  4. NERC [NE/R008817/1] Funding Source: UKRI

向作者/读者索取更多资源

The study found that removal strategies have a significant impact on the management of invasive species, with higher cull rates and spatial extent resulting in better control of invasive populations, and even potential eradication. Slow dispersers require lower cull rates for eradication, and the optimal balance between management effort and invasion outcomes is achieved when intermediate effort is applied to an intermediate number of patches.
The effects of biological invasions on native biodiversity have resulted in a range of policy and management initiatives to minimize their impacts. Although management options for invasive species include eradication and population control, empirical knowledge is limited on how different management strategies affect invasion outcomes. An individual-based model (IBM) was developed to predict how different removal ('culling') strategies affected the abundance and spatial distribution of a virtual, small-bodied, r-selected alien fish (based on bitterling, Rhodeus sericeus) across three types of virtual river catchments (low/intermediate/high branching tributary configurations). It was then applied to nine virtual species of varying life-history traits (r- to K-selected) and dispersal abilities (slow/intermediate/fast) to identify trade-offs between the management effort applied in the strategies (as culling rate and the number of patches it was applied to) and their predicted effects. It was also applied to a real-world example, bitterling in the River Great Ouse, England. The IBM predicted that removal efforts were more effective when applied to recently colonized patches. Increasing the cull rate (proportion of individuals removed per patch), and its spatial extent was effective at controlling the invasive population; when both were relatively high, population eradication was predicted. The characteristics of the nine virtual species were the main source of variation in their predicted abundance and spatial distribution. No species were eradicated at cull rates below 70%. Eradication at higher cull rates depended on dispersal ability; slow dispersers required lower rates than fast dispersers, and the latter rapidly recolonized at low cull rates. The trade-offs between management effort and the outcomes of the invasion were, generally, optimal when intermediate effort was applied to intermediate numbers of patches. In the Great Ouse, model predictions were that management interventions could restrict bitterling distribution by 2045 to 21% of the catchment (versus 90% occupancy without management). Synthesis and application. This IBM predicted how management efforts can be optimized against invasive fishes, providing a strong complement to risk assessments. We demonstrated that for a range of species' characteristics, culling can control and even eradicate invasive fish, but only if consistent and relatively high effort is applied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据