4.7 Article

Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 142, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2021.102997

关键词

Medium entropy alloy; Molecular dynamics simulation; Dislocation; Nanoindentation

资金

  1. Natural Science Foundation of China [51801161]
  2. Natural Science Basic Research Program of Shaanxi Province [2019JQ-020]
  3. Fundamental Research Funds for the Central Universities [31020195C001]

向作者/读者索取更多资源

Understanding contact-induced behavior in metals is crucial for studying mechanical properties. Nanoindentation studies on CoCrNi MEA revealed unique dislocation nucleation at Cr-rich clusters, contrary to conventional homogeneous nucleation in pure metals. Compositional inhomogeneity and temperature were found to influence defect behavior, with nanotwin formation and phase-transformation promoted at low temperatures.
Understanding the fundamental of contact-induced behavior in metals is critical for the studies of associated mechanical properties. Although nanocontact plasticity in the conventional pure metals or solutions have been well established, such theoretical frameworks may break down in the recently emerging medium entropy alloys (MEAs), owing to their unique disordered feature and inevitable chemical fluctuations. Here combined with crystal defect theories, we investigate the nucleation and evolution of dislocations in CoCrNi MEA during nanoindentation. Molecular dynamics simulations of nanoindentation are carried out to analyze the effects of composition inhomogeneity and temperature on the defect behavior. In contrast to the usual homogeneous nucleation criterion in pure metals, heterogeneous dislocation nucleation is preferred to occur at Cr-rich clusters in CoCrNi MEA at a lower indentation depth. Although the local composition fluctuation can facilitate the nucleation of dislocations, these partials are pinned significantly by the local atomic sites with a high level of CoCr chemical short-range order. Moreover, nanotwin and phase-transformation are promoted at low temperature, due to the low stacking fault energy and enhanced glide resistance. In particular, the formation and evolution of the distorted prismatic dislocation loop are visualized at high temperature. The new phenomena reported herein could provide a basis for tuning local composition and atomic arrangement to obtain excellent mechanical properties in medium or even high entropy alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据