4.7 Article

Mechanism of improving the stability of activated carbon catalyst by trace H2S impurities in natural gas for hydrogen production from methane decomposition

期刊

FUEL
卷 299, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120884

关键词

Methane decomposition; Hydrogen production; Catalyst stability; Molecular simulation

资金

  1. Fundamental Research Funds for the Central Universities, China [2018XKQYMS25]

向作者/读者索取更多资源

This study improves catalyst stability by adding a trace amount of H2S in direct methane decomposition, leading to increased methane conversion and delayed deactivation time. H2S changes the carbon deposition morphology of the catalyst, promoting methane molecule adsorption on the catalyst surface.
Direct methane decomposition for hydrogen production is considered a clean technology with limited CO2 emission. However, catalysts usually suffer from deactivation due to carbon deposition. This study reported a method of improving the catalyst stability by using a trace amount of H2S which naturally exists in natural gas, and the action mechanism of H2S was discussed. Coconut shell activated carbon (AC) was used as the catalyst, the pure methane was mixed with 100, 200, and 300 ppm H2S and decomposed at high temperature. Results show that adding different concentrations of H2S can increase the methane conversion and delay the deactivation time of the AC catalyst. Through scanning electron microscopy characterization and Brunauer-Emmet-Teller analysis, it was found that the positive effect of H2S is achieved by changing the carbon deposition morphology which in turn changes the AC pore width distribution and the specific surface area. Under the action of H2S, AC has a relatively large number of micropores during the reaction, promoting the adsorption of methane molecules on AC. First-principles calculations show that H2S changes the reaction pathway of methane dehydrogenation and promotes methane decomposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据