4.7 Article

Identification of coherent structures in distributed swirl-stabilized wet combustion

期刊

FUEL
卷 296, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120685

关键词

Humidified gas turbine; Colorless distributed combustion; POD; Wet; steam diluted combustion; Coherent structures; PVC

资金

  1. Phoenix BioPower AB, Sweden

向作者/读者索取更多资源

Biomass to electricity is an attractive pathway for achieving sustainable and decarbonized power. The humidified gas turbine cycle can increase electrical efficiency by reducing power loss and increasing specific power output. Wet combustion with high steam content leads to flameless combustion or colorless distributed combustion, which undergoes less fluctuations compared to conventional flames.
Towards achieving sustainable and decarbonized power, biomass to electricity is an attractive pathway. To that end, the humidified gas turbine cycle is a promising technology. Recirculated steam which contains low-grade heat can be used to replace part of the air flow. This immediately reduces power loss in the compressor and increases specific power output, benefiting higher electrical efficiency compared to dry cycles. With high steam content, wet combustion leads to the so-called flameless combustion (FC) or colorless distributed combustion (CDC) which is presently investigated using large eddy simulation and a detailed finite rate chemistry method. Further insight regarding the coherent structures is obtained. Proper orthogonal decomposition method is applied on both the velocity and the heat release field aiming to explore the in-depth dynamic of flow-flame interaction in a swirl burner. Our results are the first reporting two distinct sets of helical coherent structures. A higher frequency mode or structure at Strouhal number St -0.7 is caused by the vortex shedding, and a lower frequency mode at St -0.1 corresponds to the off-central motion of an intermittently occurring precessing vortex core (PVC). With high steam content (hence very distributed reaction regime), more frequent occurrence of the marginally stable PVC is observed. The wet flame local extinction is evidenced to be an important driver towards the promotion and suppression of the PVC structure. Compared to the very energetic flow-flame interaction in conventional flames, FC or CDC flames undergo less fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据