4.6 Article

A Novel Dehumidification Strategy to Reduce Liquid Fraction and Condensation Loss in Steam Turbines

期刊

ENTROPY
卷 23, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/e23091225

关键词

wet steam; two-phase flow; phase change; steam turbine; blade cascade; dehumidification

资金

  1. National Natural Science Foundation of China [51606015]

向作者/读者索取更多资源

The study demonstrates that increasing the inlet superheated level can reduce the liquid fraction and condensation loss in steam turbines. The newly designed turbine blades effectively improve the distribution of the liquid phase region, reducing liquid fraction and condensation loss.
Massive droplets can be generated to form two-phase flow in steam turbines, leading to erosion issues to the blades and reduces the reliability of the components. A condensing two-phase flow model was developed to assess the flow structure and loss considering the nonequilibrium condensation phenomenon due to the high expansion behaviour in the transonic flow in linear blade cascades. A novel dehumidification strategy was proposed by introducing turbulent disturbances on the suction side. The results show that the Wilson point of the nonequilibrium condensation process was delayed by increasing the inlet superheated level at the entrance of the blade cascade. With an increase in the inlet superheated level of 25 K, the liquid fraction and condensation loss significantly reduced by 79% and 73%, respectively. The newly designed turbine blades not only remarkably kept the liquid phase region away from the blade walls but also significantly reduced 28.1% averaged liquid fraction and 47.5% condensation loss compared to the original geometry. The results provide an insight to understand the formation and evaporation of the condensed droplets inside steam turbines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据