4.7 Article

A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine

期刊

ENERGY
卷 229, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120667

关键词

Cooling map; Electrification; Power consumption reduction; Internal combustion engine

资金

  1. Irankhodro Powertrain Company (IPCo)

向作者/读者索取更多资源

This paper presents a smart speed-load sensitive cooling map for internal combustion engines, optimizing cooling flow to achieve more uniform temperature distribution and reduce power consumption and radiator size, while increasing fuel consumption, hydrocarbon emission production, and coolant pump power.
Considering the fact that electrification is increasingly used in internal combustion engines, this paper aims at presenting a smart speed-load sensitive cooling map for better thermal management. For this purpose, first, thermal boundary conditions for the engine cooling passage were obtained by thermodynamic and combustion simulation. Next, the temperature distribution of the cooling passage walls was determined using conjugate heat transfer method. Then, the effect of engine load on wall temperature distribution was investigated, and it was observed that in the conventional mode where the cooling flow is only affected by the engine speed, the engine is faced with over-cooling and under-cooling. Therefore, the optimum flow for cooling the engine was achieved in such a way that the engine is hot enough and kept free from damage, while the engine has a more uniform temperature distribution. These calculations were performed by considering the boiling phenomenon. The results showed using the cooling map leads to a significant reduction in coolant flow, which in turn reduces the power consumption of the water pump and size of the radiator. Moreover, fuel consumption, hydrocarbon emission production, and the needed power of the coolant pump are enhanced by 2.1, 8.6, and 44.3%, respectively. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据