4.7 Article

A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa

期刊

ENERGY
卷 230, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120735

关键词

Gas hydrate; High-pressure; Acidic gas; Hydrate inhibitor; Thermodynamic model

资金

  1. National Natural Science Foundation of China [51974269, 51674213]
  2. China Postdoctoral Science Foundation Funded Project [2020M670602]

向作者/读者索取更多资源

A unified thermodynamic model is proposed in this paper to describe the multiple interactions of acid gas/water/alcohol/electrolyte components on gas, liquid, and hydrate phases. The model achieves high accuracy in predicting hydrate formation conditions and demonstrates better performance in mixtures containing alcohols and/or electrolytes.
The coexistence of acid gas/water/alcohol/electrolyte mixtures is common during the gas production process. Traditional methods have difficulty accurately predicting hydrate formation temperatures and pressures because of complicated molecular and ionic interactions in such mixture components. Based on the electrolyte Cubic-Plus-Association (e-CPA) equation of state (EoS) and the Parrish-Prausnitz model, this paper proposed a unified thermodynamic model to describe the multiple interactions of acid gas/water/alcohol/electrolyte components on gas, liquid, and hydrate phases by using the advantages of the e-CPA EoS to characterize the hydrogen bond association, solvation, ion electrostatic interaction, and ionic solvation. This work has achieved an accurate and flexible way to compute the hydrate formation conditions with or without acid gases, alcohols, and electrolytes. A total of 281 groups of experimental data at pressures from 0.068 MPa to 186.2 MPa are applied to validate this model. The results show that the average relative deviations (ARDs) of predicted temperatures and pressures are 0.13% and 6.52%, respectively. For nonelectrolyte systems, the ARD between the experimental and calculated hydrate formation temperatures is 0.19%, which is reduced by 0.24% and 0.34% in comparison with traditional Soave-Redlich-Kwong and Peng-Robinson EoSs. For mixtures containing alcohol and/ or electrolytes, the ARD of predicted hydrate temperatures is 0.12%. Particularly, for harsh systems with ultrahigh pressure (186.2 MPa), the sour gas content of 24.52 mol%, MeOH concentration of 50% by mass, and salinity of 31% by mass, the deviations are less than 2.2 K. More cases demonstrate the performance and synergistic effect of alcohol and electrolytes in inhibiting hydrate formation. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据