4.7 Article

Multi-objective optimization of district energy systems with demand response

期刊

ENERGY
卷 227, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120472

关键词

Vector optimization; Energy hub; District heating; Thermal network; Production optimization; Demand-side management

向作者/读者索取更多资源

Effective management strategies are crucial for achieving reductions in energy consumption and carbon dioxide emissions in district energy applications. A global optimization approach is proposed in this paper, which combines the optimization of production side with demand-side management to improve the operation of smart energy systems. By using a bi-level optimization structure, significant reductions in emissions can be achieved at the expense of a modest increase in operating cost.
In district energy applications, implementation of management strategies is crucial to achieve reductions in primary energy consumption and carbon dioxide emissions. The development of optimization tools to upgrade the operation of smart energy systems should take into account all the relevant elements of these complex infrastructures. In this paper, a global optimization approach, applied to district heating, cooling and electricity networks interconnected to each other, is proposed. The suggested approach combines the optimization of the production side, useful to understand how it is convenient to produce heat, cold and electricity, with demand-side management for district heating customers. This is reached by using a bi-level optimization structure, exploiting the genetic algorithm and linear programming. A physical model of the district heating network is included in the procedure to accurately reproduce the effects of demand-side management. The tool can be applied to different objective functions. In this paper, a multi-objective optimization is carried out with two different objective functions: the operation cost and the carbon dioxide emissions. Results show that, by choosing an intermediate trade-off among the two goals, it would be possible to have a 12% reduction in the emissions at the expense of a 25% increase in the operating cost. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据