4.5 Article

Effect of Stratification of Cathode Catalyst Layers on Durability of Proton Exchange Membrane Fuel Cells

期刊

ENERGIES
卷 14, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/en14102975

关键词

proton exchange membrane fuel cell; cathode catalyst layers; ionomer loading; stratified cathode catalyst layers

资金

  1. National Research Foundation (NRF) Free Standing Innovation grant
  2. HySA Catalysis by South African Department of Science and Innovation

向作者/读者索取更多资源

This study successfully reduced the platinum (Pt) loading in fuel cell catalyst layer by designing ionomer gradient membrane electrode assemblies (MEAs), maintaining commercial equivalent performance while increasing durability and cost-effectiveness. The optimal performance was achieved with a Pt loading ratio of 1:6 between the inner and outer layers in the two-layer stratification design, showing the highest electrochemical surface area and performance at 0.65 V.
To decrease the cost of fuel cell manufacturing, the amount of platinum (Pt) in the catalyst layer needs to be reduced. In this study, ionomer gradient membrane electrode assemblies (MEAs) were designed to reduce Pt loading without sacrificing performance and lifetime. A two-layer stratification of the cathode was achieved with varying ratios of 28 wt. % ionomer in the inner layer, on the membrane, and 24 wt. % on the outer layer, coated onto the inner layer. To study the MEA performance, the electrochemical surface area (ECSA), polarization curves, and electrochemical impedance spectroscopy (EIS) responses were evaluated under 20, 60, and 100% relative humidity (RH). The stratified MEA Pt loading was reduced by 12% while maintaining commercial equivalent performance. The optimal two-layer design was achieved when the Pt loading ratio between the layers was 1:6 (inner:outer layer). This MEA showed the highest ECSA and performance at 0.65 V with reduced mass transport losses. The integrity of stratified MEAs with lower Pt loading was evaluated with potential cycling and proved more durable than the monolayer MEA equivalent. The higher ionomer loading adjacent to the membrane and the bi-layer interface of the stratified catalyst layer (CL) increased moisture in the cathode CL, decreasing the degradation rate. Using ionomer stratification to decrease the Pt loading in an MEA yielded a better performance compared to the monolayer MEA design. This study, therefore, contributes to the development of more durable, cost-effective MEAs for low-temperature proton exchange membrane fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据