4.7 Article

Green synthesis of lignin nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water

期刊

CHEMOSPHERE
卷 272, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129801

关键词

Graphitic carbon-nitride nanorods; Lignin nanorods; Lignin-based nanocomposite material; Photocatalytic activity; Triclosan; Wastewater treatment

资金

  1. Ministry of Science and Technology, Taiwan [MOST107-2113-M-037-007-MY2]
  2. Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan

向作者/读者索取更多资源

The study developed a highly efficient catalyst by incorporating lignin nanorods into graphitic carbon nitride nanomaterials, effectively degrading TCS in water.
Triclosan (TCS) is a common anti-microbial ingredient in pharmaceutical and personal care products. The usage of TCS was banned by the United States Food and Drug Administration (in 2016) due to its potential health risks. However, TCS has been frequently detected in the aquatic environment. Therefore, it is vital to design low-cost and highly efficient photocatalysts to enhance TCS's photocatalytic degradation in wastewater treatment to eliminate its toxicity to environmental health. In this study, we developed a highly efficient catalyst by incorporating lignin nanorods (LNRs) into graphitic carbon nitride (GCN) nanomaterials as green LNRs/GCN-based nanocomposite photocatalysts for the effective degradation of TCS in waters. LNRs/GCN nanosheets (NSs) and LNRs/GCN-NRs based nanocomposite materials were prepared using a simple wet-impregnation method. The surface morphology and optical properties of as-synthesized materials were well-characterized using FE-SEM, XRD, XPS, and UV-DRS. The photocatalyst (LNRs/GCN-NRs) material showed maximum TCS degradation efficiency of 99.9% and a high rate constant of 0.0661 min(-1) under pH-10 with crucial reactive spices ((OH)-O-center dot and O-center dot(2)-), and excellent cycling performance (over five cycles) within 90 min of UV-light illumination. LNRs/GCN-NRs nanocomposite indicated enhanced photocatalytic performances for TCS degradation due to its strong synergistic effect between LNRs and GCN-NRs as bifunctional catalyst substrate morphology with efficient bandgap energy and accessible active sites compared to LNRs/GCN-NSs. Therefore, LNRs/GCN-NRs nanocomposite was observed to be a highly-active, low-cost, stable, eco-friendly, and efficient photocatalyst for complete degradation of TCS under UV-light irradiation. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据