4.7 Article

Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes

期刊

CHEMOSPHERE
卷 273, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129634

关键词

Adsorption; Agricultural waste; Hybrid reactor; Malachite green dye; Electrolytic cell; Pollution

向作者/读者索取更多资源

A study comparing electrolytic, adsorption, and hybrid methods for removing malachite green dye from water using Eucalyptus globulus seeds found that the hybrid method was most effective at 12 V voltage, with removal capacity increasing with higher voltages. The removal efficiency of the particle electrodes at 6, 9, and 12 V were 95%, 97%, and 99.8% respectively, and the biosorbent could be reused up to ten times without significant loss in efficiency.
A comparison study of an electrolytic, adsorption, and a novel hybrid method towards the removal of malachite green (MGD) dye from the aquatic environment utilizing agricultural biomass, Eucalyptus globulus seeds was examined. The synthesized material has been characterized by thermogravimetric analysis, SEM, FTIR, and XRD. The acid-modified biosorbent developed a microporous structure suggesting a suitable removal process of MDG. The hybrid method was carried in an indigenously designed three-phase three-dimensional electrolytic reactor with varying applied voltage (6, 9, and 12 V) with biosorbent serving as particle electrode. The hybrid method gave the highest removal rate at a voltage of 12 V, compared to other methods. Moreover, the dye removal capacity increased with increased voltage, and contact time was optimized at 15 min. The adsorption isotherm was well fitted with Freundlich isotherm and kinetic data represented pseudo-second-order. Intra particle diffusion studies suggested no interference with gradual adsorption from macropores to micropores. The removal efficiency of particles electrodes for 6, 9, and 12 V were 95, 97, and 99.8%, respectively. The higher removal of MDG towards the hybrid system may be assigned to the synergistic effect of electrolytic and adsorption systems. Regeneration studies indicated that the biosorbent can be reused up to ten times without appreciable loss of efficiency. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据