4.7 Article

Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization

期刊

CHEMICAL ENGINEERING JOURNAL
卷 415, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129064

关键词

Pyrolysis; Organic fraction of municipal solid waste (OFMSW); Anaerobic digestion; Kinetics; Thermodynamics

资金

  1. FORMAS-Swedish Research Council for Sustainable Development
  2. Chinese Scholarship Council (CSC)

向作者/读者索取更多资源

This study investigated the pyrolysis performance of solid residues from anaerobic digestion of organic fraction of municipal solid waste, as well as the impact of anaerobic digestion on the pyrolysis process. The results showed that anaerobic digestion enhances interactions among feedstock components during pyrolysis, but inhibits the yields of heavy organics and gas.
Treating the solid residue after anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is currently a challenge. Here, pyrolysis is a promising way of recovering energy and materials from these solid residues. Thus, the objective of this study was to investigate the pyrolysis performance of these solid residues. The effect of AD on the pyrolysis of OFMSW was also studied. Thermogravimetry (TG), differential thermal analysis (DTA), and bench-scale pyrolysis experiments were performed by using OFMSW and anaembically digested OFMSW. Mathematical deconvolution analysis (MDA), model-free methods, and model-based methods were applied to study the kinetics. Thereafter, thermodynamic parameters were estimated based on the deduced kinetic results. The char, liquid, and permanent gas products from bench-scale experiments were characterized. The pyrolysis results show that the activation energies of the pseudoreactions of OFMSW are higher than those of the corresponding pseudoreactions of digestate. Moreover, the entropy reduction for digestate is larger than that for OFMSW. The characterization results of the products from the bench-scale experiments show that the interactions among feedstock components (lipids, lignocellulose, and proteins) during pyrolysis are enhanced by the application of AD. However, the pyrolysis yields of both heavy organics and gas are inhibited by the application of AD, while the char yield shows the opposite trend.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据