4.7 Article

Systems-thinking approach to identify and assess feasibility of potential interventions to reduce antibiotic use in tilapia farming in Egypt

期刊

AQUACULTURE
卷 540, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aquaculture.2021.736735

关键词

Antibiotic resistance; Antimicrobial resistance; One health; Aquaculture; Tilapia; Egypt

资金

  1. UK Medical Research Council [MR/R015104/1]
  2. CGIAR Research Program on Fish Agri-Food Systems (FISH)
  3. BOLTI project (British Council UK Newton Fund, Institutional Links) [216429216]

向作者/读者索取更多资源

This study applies participatory systems-thinking approach to Nile tilapia production in the Nile Delta of Egypt, identifying potential short-term interventions to effectively reduce antibiotic use, mainly focusing on improving culture water quality parameters, feed storage conditions, and training programs for stakeholders.
Antibiotics are used in aquaculture to maintain the health and welfare of stocks; however, the emergence and selection of antibiotic resistance in bacteria poses threats to humans, animals and the environment. Mitigation of antibiotic resistance relies on understanding the flow of antibiotics, residues, resistant bacteria and resistance genes through interconnecting systems, so that potential solutions can be identified and issues around their implementation evaluated. Participatory systems-thinking can capture the deep complexity of a system while integrating stakeholder perspectives. In this present study, such an approach was applied to Nile tilapia (Oreochromis niloticus) production in the Nile Delta of Egypt, where disease events caused by antibiotic-resistant pathogens have been reported. A system map was co-produced with aquaculture stakeholders at a workshop in May 2018 and used to identify hotspots of antibiotic use, exposure and fate and to describe approaches that would promote fish health and thus reduce antibiotic use. Antibiotics are introduced into the aquaculture system via direct application for example in medicated feed, but residues may also be introduced into the system through agricultural drainage water, which is the primary source of water for most fish farms in Egypt. A followup survey of stakeholders assessed the perceived feasibility, advantages and disadvantages of potential interventions. Interventions that respondents felt could be implemented in the short-term to reduce antibiotic usage effectively included: more frequent water exchanges, regular monitoring of culture water quality parameters, improved storage conditions for feed, use of probiotics and greater access to farmer and service providers training programmes. Other potential interventions included greater access to suitable and rapid diagnostics, high quality feeds, improved biosecurity measures and genetically-improved fish, but these solutions were expected to be achieved as long-term goals, with cost being of one of the noted barriers to implementation. Identifying feasible and sustainable interventions that can be taken to reduce antibiotic use, and understanding implementation barriers, are important for addressing antibiotic resistance and ensuring the continued efficacy of antibiotics. This is vital to ensuring the productivity of the tilapia sector in Egypt. The approach taken in the present study provides a means to identify points in the system where the effectiveness of interventions can be evaluated and thus it may be applied to other food production systems to combat the problem of antibiotic resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据