4.7 Article

A deep-learning based multimodal system for Covid-19 diagnosis using breathing sounds and chest X-ray images

期刊

APPLIED SOFT COMPUTING
卷 109, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2021.107522

关键词

Covid-19; CNN; MLP; Chest X-ray images; Breathing sounds; Deep-learning

向作者/读者索取更多资源

The study proposes a multimodal framework called Ai-CovScan for Covid-19 detection using breathing sounds, chest X-ray images, and rapid antigen tests. They developed a model called CovScanNet using transfer learning and Multi-Layered Perceptron to reduce false negatives. The model achieves an accuracy of 80% for breathing sound analysis and 99.66% for Covid-19 detection on the CXR image dataset.
Covid-19 has become a deadly pandemic claiming more than three million lives worldwide. SARS-CoV-2 causes distinct pathomorphological alterations in the respiratory system, thereby acting as a biomarker to aid its diagnosis. A multimodal framework (Ai-CovScan) for Covid-19 detection using breathing sounds, chest X-ray (CXR) images, and rapid antigen test (RAnT) is proposed. Transfer Learning approach using existing deep-learning Convolutional Neural Network (CNN) based on Inception-v3 is combined with Multi-Layered Perceptron (MLP) to develop the CovScanNet model for reducing false-negatives. This model reports a preliminary accuracy of 80% for the breathing sound analysis, and 99.66% Covid-19 detection accuracy for the curated CXR image dataset. Based on Ai-CovScan, a smartphone app is conceptualised as a mass-deployable screening tool, which could alter the course of this pandemic. This app's deployment could minimise the number of people accessing the limited and expensive confirmatory tests, thereby reducing the burden on the severely stressed healthcare infrastructure. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Computer Science, Artificial Intelligence

iSecureHome: A deep fusion framework for surveillance of smart homes using real-time emotion recognition

Harshit Kaushik, Tarun Kumar, Kriti Bhalla

Summary: With the rapid development of AI, IoT, and HCC, the popularity of smart homes has increased significantly. However, ensuring the security of residents in smart homes remains a challenging task. This research proposes a real-time facial emotion-based security framework that uses a CMOS camera to predict security concerns in smart homes. Experimental results show that the framework achieves high accuracy.

APPLIED SOFT COMPUTING (2022)

Article Green & Sustainable Science & Technology

An Emergy-based Approach to Evaluate the Effectiveness of Integrating IoT-based Sensing Systems into Smart Buildings

Tarun Kumar, Ravi Srinivasan, Monto Mani

Summary: This paper proposes an Emergy-based method to evaluate the effectiveness of integrating IoT-based sensing systems into smart buildings. The method employs three novel Emergy Neutrality Indices (ENIs) and is applied to a solar house retrofitted with an IoT-based sensing system. The study demonstrates the effectiveness of the integration and highlights the significance of reporting these indices. Designers and stakeholders can use these ENIs as useful tools for evaluating the environmental effectiveness of integrating smart sensing systems into buildings.

SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS (2022)

Proceedings Paper Computer Science, Artificial Intelligence

Design and development of an assistive device for the visually impaired

Unais Sait, Vandana Ravishankar, Tarun Kumar, Rahul Bhaumik, Gokul K. Lal, Kriti Bhalla, Kamble Sanket Sanjay

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE (2020)

Proceedings Paper Computer Science, Artificial Intelligence

Design and development of a smartphone-based application to save lives during accidents and emergencies

Gokul K. Lal, Unais Sait, Tarun Kumar, Rahul Bhaumik, Sanjana Shivakumar, Kriti Bhalla

INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE (2020)

Proceedings Paper Computer Science, Interdisciplinary Applications

An Inclusive Community Based Water Purification and Monitoring System for the Base of the Pyramid

Rahul Bhaumik, Sunny Prakash Prajapati, Tarun Kumar, Vishal Mishra, Kriti Bhalla

2019 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC) (2019)

Proceedings Paper Computer Science, Interdisciplinary Applications

Design and Development of Khadi-Kart: A Web-based application for rejuvenating the Handloom Industry in India

Vishal Mishra, Tarun Kumar, Sanjana Shivakumar, Vandana D. Ravishankar, Kriti Bhalla, Brajesh Dhiman

2019 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC) (2019)

Proceedings Paper Computer Science, Interdisciplinary Applications

Memhans: an Assistive Device for Dementia Patients

Unais Sait, Vandana D. Ravishankar, Tarun Kumar, Sanjana Shivakumar, Gokul K. Lal, Kriti Bhalla, Manvendra Singh, Rahul Bhaumik

2019 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC) (2019)

Article Computer Science, Artificial Intelligence

Style linear k-nearest neighbor classification method

Jin Zhang, Zekang Bian, Shitong Wang

Summary: This study proposes a novel style linear k-nearest neighbor method to extract stylistic features using matrix expressions and improve the generalizability of the predictor through style membership vectors.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

A dimensionality reduction method for large-scale group decision-making using TF-IDF feature similarity and information loss entropy

Qifeng Wan, Xuanhua Xu, Jing Han

Summary: In this study, we propose an innovative approach for dimensionality reduction in large-scale group decision-making scenarios that targets linguistic preferences. The method combines TF-IDF feature similarity and information loss entropy to address challenges in decision-making with a large number of decision makers.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Frequency-based methods for improving the imperceptibility and transferability of adversarial examples

Hegui Zhu, Yuchen Ren, Chong Liu, Xiaoyan Sui, Libo Zhang

Summary: This paper proposes an adversarial attack method based on frequency information, which optimizes the imperceptibility and transferability of adversarial examples in white-box and black-box scenarios respectively. Experimental results validate the superiority of the proposed method and its application in real-world online model evaluation reveals their vulnerability.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Consensus-based generalized TODIM approach for occupational health and safety risk analysis with opinion interactions

Jing Tang, Xinwang Liu, Weizhong Wang

Summary: This paper proposes a hybrid generalized TODIM approach in the Fine-Kinney framework to evaluate occupational health and safety hazards. The approach integrates CRP, dynamic SIN, and PLTSs to handle opinion interactions and incomplete opinions among decision makers. The efficiency and rationality of the proposed approach are demonstrated through a numerical example, comparison, and sensitivity studies.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Deep Q-network-based heuristic intrusion detection against edge-based SIoT zero-day attacks

Shigen Shen, Chenpeng Cai, Zhenwei Li, Yizhou Shen, Guowen Wu, Shui Yu

Summary: To address the damage caused by zero-day attacks on SIoT systems, researchers propose a heuristic learning intrusion detection system named DQN-HIDS. By integrating Deep Q-Networks (DQN) into the system, DQN-HIDS gradually improves its ability to identify malicious traffic and reduces resource workloads. Experiments demonstrate the superior performance of DQN-HIDS in terms of workload, delayed sample queue, rewards, and classifier accuracy.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

A Chinese text classification based on active

Song Deng, Qianliang Li, Renjie Dai, Siming Wei, Di Wu, Yi He, Xindong Wu

Summary: In this paper, we propose a Chinese text classification algorithm based on deep active learning for the power system, which addresses the challenge of specialized text classification. By applying a hierarchical confidence strategy, our model achieves higher classification accuracy with fewer labeled training data.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Ranking intuitionistic fuzzy sets with hypervolume-based approach: An application for multi-criteria assessment of energy alternatives

Kaan Deveci, Onder Guler

Summary: This study proves the lack of robustness in nonlinear IF distance functions for ranking intuitionistic fuzzy sets (IFS) and proposes an alternative ranking method based on hypervolume metric. Additionally, the suggested method is extended as a new multi-criteria decision making method called HEART, which is applied to evaluate Turkey's energy alternatives.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Improved energy management of chiller system with AI-based regression

Fu-Wing Yu, Wai-Tung Ho, Chak-Fung Jeff Wong

Summary: This research aims to enhance the energy management in commercial building air-conditioning systems, specifically focusing on chillers. Ridge regression is found to outperform lasso and elastic net regression when optimized with the appropriate hyperparameter, making it the most suitable method for modeling the system coefficient of performance (SCOP). The key variables that strongly influence SCOP include part load ratios, the operating numbers of chillers and pumps, and the temperatures of chilled water and condenser water. Additionally, July is identified as the month with the highest potential for performance improvement. This study introduces a novel approach that balances feature selection, model accuracy, and optimal tuning of hyperparameters, highlighting the significance of a generic and simplified chiller system model in evaluating energy management opportunities for sustainable operation. The findings from this research can guide future efforts towards more energy-efficient and sustainable operations in commercial buildings.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Three-dimension object detection and forward-looking control strategy for non-destructive grasp of thin-skinned fruits

Xiaoyan Chen, Yilin Sun, Qiuju Zhang, Xuesong Dai, Shen Tian, Yongxin Guo

Summary: In this study, a method for dynamically non-destructive grasping of thin-skinned fruits is proposed. It utilizes a multi-modal depth fusion convolutional neural network for image processing and segmentation, and combines the evaluation mechanism of optimal grasping stability and the forward-looking non-destructive grasp control algorithm. The proposed method greatly improves the comprehensive performance of grasping delicate fruits using flexible hands.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Siamese learning based on graph differential equation for Next-POI recommendation

Yuxuan Yang, Siyuan Zhou, He Weng, Dongjing Wang, Xin Zhang, Dongjin Yu, Shuiguang Deng

Summary: The study proposes a novel model, POIGDE, which addresses the challenges of data sparsity and elusive motives by solving graph differential equations to capture continuous variation of users' interests. The model learns interest transference dynamics using a time-serial graph and an interval-aware attention mechanism, and applies Siamese learning to directly learn from label representations for predicting future POI visits. The model outperforms state-of-the-art models on real-world datasets, showing potential in the POI recommendation domain.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

An adaptive data compression technique based on optimal thresholding using multi-objective PSO algorithm for power system data

S. Karthika, P. Rathika

Summary: The widespread development of monitoring devices in the power system has generated a large amount of power consumption data. Storing and transmitting this data has become a significant challenge. This paper proposes an adaptive data compression algorithm based on the discrete wavelet transform (DWT) for power system applications. It utilizes multi-objective particle swarm optimization (MO-PSO) to select the optimal threshold. The algorithm has been tested and outperforms other existing algorithms.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification

Jiaqi Guo, Haiyan Wu, Xiaolei Chen, Weiguo Lin

Summary: In this study, an adaptive SV-Borderline SMOTE-SVM algorithm is proposed to address the challenge of imbalanced data classification. The algorithm maps the data into kernel space using SVM and identifies support vectors, then generates new samples based on the neighbors of these support vectors. Extensive experiments show that this method is more effective than other approaches in imbalanced data classification.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

HilbertSCNet: Self-attention networks for small target segmentation of aerial drone images

Qiumei Zheng, Linkang Xu, Fenghua Wang, Yongqi Xu, Chao Lin, Guoqiang Zhang

Summary: This paper proposes a new semantic segmentation network model called HilbertSCNet, which combines the Hilbert curve traversal and the dual pathway idea to design a new spatial computation module to address the problem of loss of information for small targets in high-resolution images. The experiments show that the proposed network performs well in the segmentation of small targets in high-resolution maps such as drone aerial photography.

APPLIED SOFT COMPUTING (2024)

Article Computer Science, Artificial Intelligence

A comprehensive state-of-the-art survey on the recent modified and hybrid analytic hierarchy process approaches

Mojtaba Ashour, Amir Mahdiyar

Summary: Analytic Hierarchy Process (AHP) is a widely applied technique in multi-criteria decision-making problems, but the sheer number of AHP methods presents challenges for scholars and practitioners in selecting the most suitable method. This paper reviews articles published between 2010 and 2023 proposing hybrid, improved, or modified AHP methods, classifies them based on their contributions, and provides a comprehensive summary table and roadmap to guide the method selection process.

APPLIED SOFT COMPUTING (2024)

Review Computer Science, Artificial Intelligence

A systematic review of metaheuristic algorithms in electric power systems optimization

Gerardo Humberto Valencia-Rivera, Maria Torcoroma Benavides-Robles, Alonso Vela Morales, Ivan Amaya, Jorge M. Cruz-Duarte, Jose Carlos Ortiz-Bayliss, Juan Gabriel Avina-Cervantes

Summary: Electric power system applications are complex optimization problems. Most literature reviews focus on studying electrical paradigms using different optimization techniques, but there is a lack of review on Metaheuristics (MHs) in these applications. Our work provides an overview of the paradigms underlying such applications and analyzes the most commonly used MHs and their search operators. We also discover a strong synergy between the Renewable Energies paradigm and other paradigms, and a significant interest in Load-Forecasting optimization problems. Based on our findings, we provide helpful recommendations for current challenges and potential research paths to support further development in this field.

APPLIED SOFT COMPUTING (2024)