4.5 Review Book Chapter

New Insights into Classical Novae

期刊

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-astro-112420-114502

关键词

thermonuclear explosions; white dwarf stars; cataclysmic variable stars; (radiative) shocks; relativistic particle acceleration; gamma rays

资金

  1. NSF [AST-1751874, AST-1907790, AST-1615084]
  2. NASA [Fermi-80NSSC18K1746, NuSTAR-80NSSC19K0522]
  3. Cottrell fellowship of the Research Corporation
  4. Simons Foundation [606260]
  5. NASA Astrophysics Theory Program [NNX17AG28G, 80NSSC20K0544]
  6. NASA [1002064, NNX17AG28G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Classical novae are nonterminal, thermonuclear eruptions on white dwarfs in binary systems. The recent discovery of GeV gamma rays from Galactic novae has shown the complexity of novae and their importance as laboratories for studying shocks and particle acceleration. The mass ejection processes of novae are poorly understood, leading to the production of gamma-ray-producing shocks internal to the nova ejecta which significantly contribute to the bolometric luminosity of novae.
We survey our understanding of classical novae-nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据