4.3 Article

Transient antibiotic-induced changes in the neonatal swine intestinal microbiota impact islet expression profiles reducing subsequent function

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00090.2021

关键词

antibiotic; beta-cells; Escherichia; gut microbiota; insulin

资金

  1. Canadian Institutes of Health Research [349152]
  2. National Council of Science and Technology of Mexico (CONACYT)
  3. Women and Children's Health Research Institute
  4. Alberta Innovates
  5. Natural Sciences and Engineering Research Council postdoctoral fellowship
  6. Undergraduate Student Research Award
  7. Canada Research Chairs Program

向作者/读者索取更多资源

Neonatal antibiotic treatment in piglets led to changes in gut microbiota and alterations in key regulatory genes in pancreatic islets at postnatal days 7 and 14. By postnatal day 49, a reduction in beta-cell area and islet insulin content were observed alongside elevated nonfasted insulin levels, indicating islet stress.
Neonatal antibiotics administered to human infants initiate gut microbiota dysbiosis that may have long-term effects on body weight and metabolism. We examined antibiotic-induced adaptations in pancreatic islets of the piglet, a well-accepted model of human infant microbiota and pancreas development. Neonatal piglets randomized to amoxicillin [30 mg/kg body wt/day; n = 7, antibiotic (ANTI)] or placebo [vehicle control; n = 7, control (CON)] from postnatal day (PND)0-13 were euthanized at PND7, 14, and 49. The metabolic phenotype along with functional, immunohistological, and transcriptional phenotypes of the pancreatic islets were studied. The gut microbiome was characterized by 16S rRNA gene sequencing, and microbial metabolites and microbiome-sensitive host molecules were measured. Compared with CON, ANTI PND7 piglets had elevated transcripts of genes involved in glucagon-like peptide 1 ((GLP-1) synthesis or signaling in islets (P < 0.05) coinciding with higher plasma GLP-1 (P = 0.11), along with increased tumor necrosis factor alpha (Tnf) (P < 0.05) and protegrin 1 (Npg1) (P < 0.05). Antibiotic-induced relative increases in Escherichia, Coprococcus, Ruminococcus, Dehalobacterium, and Oscillospira of the ileal microbiome at PND7 normalized after antibiotic withdrawal. In ANTI islets at PND14, the expression of key regulators pancreatic and duodenal homeobox 1 (Pdx1), insulin-like growth factor-2 (Igf2), and transcription factor 7-like 2 (Tcf7l2) was downregulated, preceding a 40% reduction of beta-cell area (P < 0.01) and islet insulin content at PND49 (P < 0.05). At PND49, a twofold elevated plasma insulin concentration (P = 0.07) was observed in ANTI compared with CON. We conclude that antibiotic treatment of neonatal piglets elicited gut microbial changes accompanied by phasic alterations in key regulatory genes in pancreatic islets at PND7 and 14. By PND49, reduced beta-cell area and islet insulin content were accompanied by elevated nonfasted insulin despite normoglycemia, indicative of islet stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据