4.7 Article

Uncertainties in gas-path diagnosis of gas turbines: Representation and impact analysis

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 113, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2021.106724

关键词

Gas turbine; Gas-path diagnosis; Uncertainty representation; Convolutional neural network

资金

  1. National Natural Science Foundation of China [52075415]
  2. National Science and Technology Major Project [2017V00100060]

向作者/读者索取更多资源

Gas-path diagnosis is efficient and beneficial to gas turbines, but existing simulation methods need to consider uncertainties to improve algorithm performance in real systems. A representation scheme covering major uncertainties was proposed, with uncertainty impacts monitored through a benchmark method based on convolutional neural networks. The study aims to bridge the gap between simulation and reality in gas-path diagnosis.
Gas-path diagnosis is of great efficiency and economic benefit to gas turbines, whose algorithms are generally developed and tested by simulation. However, the existing simulation methods take insufficient consideration of a battery of uncertainties compared with the physical system. This shortcoming results in the poor performance of well-trained algorithms in the real system. A systematic representation scheme that covers all major uncertainties is urgently needed to narrow the gap between simulation and reality. This paper shows a representation scheme comprised of all major uncertainties. Various uncertainty ingredients are considered to fit the real system. The different impacts of uncertainties are monitored via a benchmark gas-path diagnosis method based on convolutional neural networks. Simulation results show the feasibility of uncertainty impact monitoring through a benchmark diagnosis method and verify the consistency between the proposed scheme and the reality. The fatal impact of the uncertainty with a slow frequency is discovered. And the evident sensitivity of the fault diagnosis to performance deterioration is identified in the end. The proposed representation scheme provides a platform where gas-path diagnosis algorithms can be compared under the unified and realistic benchmark. (C) 2021 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据