4.8 Article

Polyethylenimine-Modified Mesoporous Silica Nanoparticles Induce a Survival Mechanism in Vascular Endothelial Cells via Microvesicle-Mediated Autophagosome Release

期刊

ACS NANO
卷 15, 期 6, 页码 10640-10658

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c03456

关键词

polyethylenimine-modified mesoporous silica nanoparticles; vascular endothelia cell; autophagosome release; microvesicle; autophagy; cytoskeleton

资金

  1. National Natural Science Foundation of China [32070742, 31471296]
  2. Research Program for Science and Technology of Henan Province [192102310148]

向作者/读者索取更多资源

Surface-modified mesoporous silica nanoparticles (MSNs) show no obvious toxicity to human umbilical vein endothelial cells (HUVECs) but induce the accumulation of autophagosomes, affecting cell survival by blocking their fusion with lysosomes. A compensation mechanism involving the release of accumulated autophagosomes via microvesicles (MVs) allows vascular endothelial cell survival when the degradation of autophagosomes is blocked by MSNs-PEI, thus suggesting a potential protective strategy against the endothelial toxicity of nanoparticles (NPs).
Surface-modified mesoporous silica nanoparticles (MSNs) have attracted more and more attention as promising materials for biomolecule delivery. However, the lack of detailed evaluation relevant to the potential cytotoxicity of these MSNs is still a major obstacle for their applications. Unlike the bare MSNs and amino- or liposome-modified MSNs, we found that polyethylenimine-modified MSNs (MSNs-PEI) had no obvious toxicity to human umbilical vein endothelial cells (HUVECs) at the concentrations up to 100 mu g/mL. However, MSNs-PEI induced autophagosomes accumulation by blocking their fusion with lysosomes, an essential mechanism for the cytotoxicity of many nanoparticles (NPs). Thus, we predicted that an alternative pathway for autophagosome clearance exists in HUVECs to relieve autophagic stress induced by MSNs-PEI. We found that MSNs-PEI prevented STX17 loading onto autophagosomes instead of influencing lysosomal pH or proteolytic activity. MSNs-PEI induced the structural alternation of the cytoskeleton but did not cause endoplasmic reticulum stress. The accumulated autophagosomes were released to the extracellular space via microvesicles (MVs) when the autophagic degradation was blocked by MSNs-PEI. More importantly, blockade of either autophagosome formation or release caused the accumulation of damaged mitochondria and excessive ROS production in the MSNs-PEI-treated HUVECs, which in turn led to cell death. Thus, we propose here that the MV-mediated autophagosome release, a compensation mechanism, allows the vascular endothelial cell survival when the degradation of autophagosomes is blocked by MSNs-PEI. Accordingly, promoting the release of accumulated autophagosomes may be a protective strategy against the endothelial toxicity of NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Microstructure and mechanical behavior of functionally graded cemented carbides with CoNiFeCr multi-principal-element alloy binder

Cheng Qian, Yong Liu, Huichao Cheng, Kun Li, Bin Liu, Xin Zhang

Summary: In this study, functionally graded cemented carbides with a multi-principal-element alloy binder were prepared. The results showed that a higher carbon content can increase the diffusion rate and channel of carbon, leading to improved mechanical properties of the carbides obtained at appropriate carburization temperatures.

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS (2023)

Article Materials Science, Multidisciplinary

A novel L12-strengthened AlCoCuFeNi high-entropy alloy with both high hardness and good corrosion resistance

Yaojia Ren, Hong Wu, Bin Liu, Quan Shan, Sheng Guo, Zengbao Jiao, Ian Baker

Summary: A high hardness, crack-free AlCoCuFeNi high-entropy alloy with good corrosion resistance was successfully produced by spark plasma sintering and hot rolling. The alloy exhibited a fine and uniform microstructure, low anisotropy, good wear and corrosion resistance, and grain boundary sliding as the creep mechanism.

MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

Interfacial stability analysis between Ca-doped Na3PS4 solid electrolyte and Na anode from first-principles calculations

Han Li, Zhonglin Zhang, Bin Liu, Jingli Liu, Bingbing Chen, Jianqiu Zhou

Summary: In this study, the chemical and mechanical stability of the interfaces between Ca2+ doped Na3PS4 solid electrolyte and Na anode, as well as un-doped Na3PS4 solid electrolyte and Na anode, were systematically investigated using first-principles calculations. The crystal structure, electronic structure, and mechanical properties of the two interface structures were analyzed. The results demonstrated that Ca2+ doping enhanced the chemical stability and mechanical strength of the interface structure, leading to improved battery performance and capacity retention. This surface modification provides valuable insights for designing all-solid-state batteries with high capacity and long cycle life.

COMPUTATIONAL MATERIALS SCIENCE (2023)

Article Environmental Sciences

Physiological responses of marine Chlorella sp. exposed to environmental levels of triphenyltin

Zhihan Cao, Ping Li, Jinchuang Ru, Xuqian Cao, Xu Wang, Bin Liu, Zhi-Hua Li

Summary: This study evaluated the impact of environmental levels of triphenyltin (TPT) on marine Chlorella sp. It found that TPT had both promoting and inhibitory effects on the growth of marine Chlorella sp. depending on the concentration. The chlorophyll composition changed, and oxidative damage and gene expression alterations were observed. These findings contribute to a better understanding of the ecological toxicity of TPT in marine environments.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Engineering, Mechanical

Irradiation hardening behavior of high entropy alloys using random field theory informed discrete dislocation dynamics simulation

Yang Chen, Shuo Wang, Hui Feng, Weipeng Li, Bin Liu, Jia Li, Yong Liu, Peter K. Liaw, Qihong Fang

Summary: By conducting high-resolution transmission electron microscopy and random field theory informed discrete dislocation dynamics simulations, this study reveals the influence mechanism of heterogeneous lattice strain on the complex interaction between dislocations and dislocation loops in high entropy alloys (HEAs) under irradiation. The results show that lattice-strain-induced irradiation hardening decreases, in line with the excellent irradiation hardening resistance of HEAs observed in recent experiments. A new cross-slip mechanism is also discovered, involving the co-linear reaction between dislocations and rhombus perfect loops. This study provides insights into the mesoscopic-level irradiation damage behavior, guiding the development of advanced HEA materials for nuclear energy applications through the regulation of heterogeneous lattice strain.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Formation process and mechanical properties in selective laser melted multi-principal-element alloys

Jing Peng, Jia Li, Bin Liu, Jian Wang, Haotian Chen, Hui Feng, Xin Zeng, Heng Duan, Yuankui Cao, Junyang He, Peter K. Liaw, Qihong Fang

Summary: Additive manufacturing is believed to open a new era in precise microfabrication. This study investigates the microstructure evolution of a prototype multi-principal-element alloy FeCrNi fabricated using selective laser melting (SLM) through experiment and simulation. The results reveal the growth of columnar crystals across cladding layers and the development of dense cellular structures in the filled crystal. At the micron scale, the constituent elements are evenly distributed, while at the near-atomic scale, segregation of Cr element is observed. Simulation results demonstrate changes in the solid-liquid interface and the formation of precipitates, microscale voids, and stacking faults due to the thermal gradient, resulting in residual stress in the SLMed structure. A microstructure-based physical model reveals the presence of strong interface strengthening in tensile deformation.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Effects of Si addition on mechanical, electrical and magnetic property of Cu-10Fe alloy

Xinxin Lv, Ning Cao, LingJun He, Bin Liu, Haotian Sun, Wenting Qiu, Zhu Xiao, Yanbin Jiang, Shen Gong

Summary: A series of Cu-10Fe-xSi (x = 0, 0.8, 1.6 wt%) alloys were prepared and the effects of Si content and a novel multi-stage thermomechanical treatment on the microstructure, mechanical, electrical, and magnetic properties of the alloys were studied. The results showed that the Cu-10Fe-0.8Si alloy exhibited higher strength, magnetic permeability, and excellent electromagnetic shielding performance compared to the Cu-10Fe alloy. After peak aging treatment, the Cu-10Fe-0.8Si alloy demonstrated a tensile strength of 593.6 MPa, conductivity of 55.66% IACS, elongation of 22.8%, and relative magnetic permeability of 1.57. The addition of an appropriate amount of Si element resulted in the formation of a dual-scale FeSi phase in the alloy, which promoted the precipitation of Fe atoms and refined the alloy grains, thereby improving the strength and magnetic properties synergistically.

MATERIALS CHARACTERIZATION (2023)

Article Materials Science, Multidisciplinary

Effect of micro-scaled compositional gradient on microstructure of high-strength Ti-W composites

Na Li, Yuankui Cao, Ao Fu, Qian Xie, Yong Liu, Bin Liu

Summary: A precipitate-gradient Ti-W alloy with simultaneous high strength and high ductility was prepared by powder metallurgy and subsequent heat treatment. The high strength was mainly caused by solid strengthening and precipitation strengthening, while the gradient structure enhanced the strength through the generation of hetero-deformation induced stress. The good ductility and superior strain hardening capability were attributed to the activation of multiple deformation modes around the gradient interface during plastic deformation.

MATERIALS CHARACTERIZATION (2023)

Article Computer Science, Artificial Intelligence

A dense light field reconstruction algorithm for four-dimensional optical flow constraint equation

Jian Liu, Na Song, Zhengde Xia, Bin Liu, Jinxiao Pan, Abdul Ghaffar, Jianbin Ren, Ming Yang

Summary: This paper analyzes the correlation and constraint relationship between the optical flow field and motion field of multi-view images to effectively reconstruct the angle domain of the light field based on sparse light field data. The proposed method can reconstruct texture, shadow, and color information in the light field of a long-baseline scene with high quality and is suitable for dense light field reconstruction in complex scenes.

PATTERN RECOGNITION (2023)

Article Geochemistry & Geophysics

Effect of Al2O3 on the Structural Properties of Water-Quenched Copper Slag Related to Pozzolanic Activity

Qinli Zhang, Dengwen Deng, Yan Feng, Daolin Wang, Bin Liu, Qiusong Chen

Summary: Water-quenched copper slag modified with alumina has been proven to be a viable substitute for cement. However, the impact of alumina on the structural properties and pozzolanic activity of the slag has not been thoroughly studied. This research characterizes the structural properties and pozzolanic activity of the slag with varying amounts of alumina using various analytical techniques. The results show that the addition of alumina improves the pozzolanic activity of the slag, but the effect is dependent on the curing age of the slag.

MINERALS (2023)

Article Chemistry, Multidisciplinary

CoFe Alloy-Coupled Mo2C Wrapped by Nitrogen-Doped Carbon as Highly Active Electrocatalysts for Oxygen Reduction/Evolution Reactions

Jiahao Xie, Yu Miao, Bin Liu, Siliang Shao, Xu Zhang, Zhiyao Sun, Xiaoqin Xu, Yuan Yao, Chaoyue Hu, Jinlong Zou

Summary: Alloying with transition metals is a feasible way to enhance the electrochemical activity and stability of molybdenum carbide. The composite NG-CoFe/Mo2C was synthesized by combining CoFe-Prussian blue analogues with graphitic carbon nitride and Mo6+. It exhibited excellent ORR and OER performances and provided a strategy to improve the stability of molybdenum carbide in oxygen electrocatalysis.

NANOMATERIALS (2023)

Article Materials Science, Multidisciplinary

Effect of Welding Current on Wear Behavior of PTA-Welded Cu35Ni25Co25Cr15 HEA Coating

Yang Gao, Zihan Yang, Haibo Xiao, Qian Lei, Bin Liu, Yong Liu

Summary: A Cu35Ni25Co25Cr15 high-entropy alloy (HEA) coating was deposited on a pure Cu substrate by plasma transfer arc (PTA) welding to enhance its surface hardness and wear resistance. The coating consisted of Cu-rich A1 phase and NiCoCr-rich γ' phase, with an apparent structural gradient and different microstructures in different zones. The coating exhibited improved interfacial bonding with increased welding current, but the hardness showed a non-monotonic trend. At a welding current of 150 A, the coating showed good metallurgical bonding with the Cu substrate and excellent wear resistance, especially at high temperatures.

COATINGS (2023)

Article Environmental Sciences

Slow Deformation Time-Series Monitoring for Urban Areas Based on the AWHPSPO Algorithm and TELM: A Case Study of Changsha, China

Xuemin Xing, Jihang Zhang, Jun Zhu, Rui Zhang, Bin Liu

Summary: Health monitoring is crucial for densely distributed urban infrastructures in rapidly progressing cities. A novel time-series InSAR process, based on the AWHPSPO algorithm and TELM, is proposed to address the limitations of PSI. The algorithm provides a reference for the control of the health and safety of urban infrastructures.

REMOTE SENSING (2023)

Article Chemistry, Multidisciplinary

Enhancing the Accuracy of Water-Level Forecasting with a New Parameter-Inversion Model for Estimating Bed Roughness in Hydrodynamic Models

Yifan Chen, Feifeng Cao, Weiping Cheng, Bin Liu

Summary: This study proposes a new parameter-inversion model for estimating bed roughness in hydrodynamic models. A numerical experiment was conducted to analyze the impact of various factors on the accuracy of inversed roughness. The results show that increasing the number of measurement stations and observed data significantly improves the model's robustness, with an optimal parameter setting of 3 stations and 30 observed data. The proposed model provides a new approach to estimating bed roughness parameters and can improve the accuracy of water-level forecasting.

APPLIED SCIENCES-BASEL (2023)

Article Materials Science, Multidisciplinary

Effects of Al and La elements on mechanical properties of CoNiFe0.6Cr0.6 high-entropy alloys: a first-principles study

Xu Wang, Xiaofeng Li, Huiqi Xie, Touwen Fan, Li Zhang, Kaiyang Li, Yuankui Cao, Xiaohui Yang, Bin Liu, Peikang Bai

Summary: The effects of Al and La elements on the mechanical properties of CoNiFe0.6Cr0.6 high-entropy alloys with a face-centered cubic structure were investigated using first-principles calculations. The study discussed in detail the variations of various physical parameters as a function of Al and La concentration. The results showed that the resistance to deformation decreased with the increase of Al and La concentration, while the plasticity and ductility of the alloys improved. The addition of Al and La also strengthened the metallic characteristic of atomic bonding and increased the material's anisotropy.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

暂无数据