4.8 Article

Improved Biocompatible, Flexible Mesh Composites for Implant Applications via Hydroxyapatite Coating with Potential for 3-Dimensional Extracellular Matrix Network and Bone Regeneration

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 13, 期 23, 页码 26824-26840

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c09034

关键词

hydroxyapatite; metallic mesh substrate; cranioplasty; coating; sol-gel

资金

  1. Louisiana Board of Regents (LaBOR) Research Competitiveness Subprogram [LEQSF(2018-2022)-RD-A-05]

向作者/读者索取更多资源

Hydroxyapatite (HA)-coated metals show potential for bone replacement and regeneration. This study designed biocompatible composite implants using a metal mesh substrate and HA coating. Experiments showed different coating methods, substrate materials, and mesh characteristics affected implant performance, but had no impact on HA coating crystal structure or shape.
Hydroxyapatite (HA)-coated metals are biocompatible composites, which have potential for various applications for bone replacement and regeneration in the human body. In this study, we proposed the design of biocompatible, flexible composite implants by using a metal mesh as substrate and HA coating as bone regenerative stimulant derived from a simple sol-gel method. Experiments were performed to understand the effect of coating method (dip-coating and drop casting), substrate material (titanium and stainless steel) and substrate mesh characteristics (mesh size, weave pattern) on implant's performance. HA-coated samples were characterized by X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, nanoindenter, polarization and electrochemical impedance spectroscopy, and biocompatibility test. Pure or biphasic nanorod HA coating was obtained on mesh substrates with thicknesses varying from 4.0 to 7.9 mu m. Different coating procedures and number of layers did not affect crystal structure, shape, or most intense plane reflections of the HA coating. Moduli of elasticity below 18.5 GPa were reported for HA-coated samples, falling within the range of natural skull bone. Coated samples led to at least 90% cell viability and up to 99.5% extracellular matrix coverage into a 3-dimensional network (16.4% to 76.5% higher than bare substrates). Fluorescent imaging showed no antagonistic effect of the coatings on osteogenic differentiation. Finer mesh size enhanced coating coverage and adhesion, but a low number of HA layers was preferable to maintain open mesh areas promoting extracellular matrix formation. Finally, electrochemical behavior studies revealed that, although corrosion protection for HA-coated samples was generally higher than bare samples, galvanic corrosion occurred on some samples. Overall, the results indicated that while HA-coated titanium grade 1 showed the best performance as a potential implant, HA-coated stainless steel 316 with the finest mesh size constitutes an adequate, lower cost alternative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据