4.7 Article

Cherry Tree Crown Extraction from Natural Orchard Images with Complex Backgrounds

期刊

AGRICULTURE-BASEL
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture11050431

关键词

agricultural computer vision; tree-crown segmentation; complex scene; natural orchard environment

类别

资金

  1. National Key Research and Development Plan of China [2017YFD0701400, 2016YFD0200700]

向作者/读者索取更多资源

This study introduces a segmentation model based on Mahalanobis distance and CRF to accurately extract cherry trees in a natural orchard environment. The proposed method outperforms traditional algorithms and deep learning algorithms in terms of accuracy, cost, and performance.
Highly effective pesticide applications require a continual adjustment of the pesticide spray flow rate that attends to different canopy characterizations. Real-time image processing with rapid target detection and data-processing technologies is vital for precision pesticide application. However, the extant studies do not provide an efficient and reliable method of extracting individual trees with irregular tree-crown shapes and complicated backgrounds. This paper on our study proposes a Mahalanobis distance and conditional random field (CRF)-based segmentation model to extract cherry trees accurately in a natural orchard environment. This study computed Mahalanobis distance from the image's color, brightness and location features to acquire an initial classification of the canopy and background. A CRF was then created by using the Mahalanobis distance calculations as unary potential energy and the Gaussian kernel function based on the image color and pixels distance as binary potential energy. Finally, the study completed image segmentation using mean-field approximation. The results show that the proposed method displays a higher accuracy rate than the traditional algorithms K-means and GrabCut algorithms and lower labeling and training costs than the deep learning algorithm DeepLabv3+, with 92.1%, 94.5% and 93.3% of the average P, R and F1-score, respectively. Moreover, experiments on datasets with different overlap conditions and image acquisition times, as well as in different years and seasons, show that this method performs well under complex background conditions, with an average F1-score higher than 87.7%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据