4.6 Article

Security Framework for IoT Based Real-Time Health Applications

期刊

ELECTRONICS
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/electronics10060719

关键词

e-health; IoT and data privacy; IoT layered architecture; CoAP

资金

  1. Ministry of Science and Higher Education, Republic of Poland [E-3/2021]

向作者/读者索取更多资源

The fusion of IoT into traditional health monitoring systems has led to significant advances, but it also brings forth technological and security challenges. Data generated from sensor devices require confidentiality and integrity, and secure communication over public networks.
The amazing fusion of the internet of things (IoT) into traditional health monitoring systems has produced remarkable advances in the field of e-health. Different wireless body area network devices and sensors are providing real-time health monitoring services. As the number of IoT devices is rapidly booming, technological and security challenges are also rising day by day. The data generated from sensor-based devices need confidentiality, integrity, authenticity, and end-to-end security for safe communication over the public network. IoT-based health monitoring systems work in a layered manner, comprising a perception layer, a network layer, and an application layer. Each layer has some security, and privacy concerns that need to be addressed accordingly. A lot of research has been conducted to resolve these security issues in different domains of IoT. Several frameworks for the security of IoT-based e-health systems have also been developed. This paper introduces a security framework for real-time health monitoring systems to ensure data confidentiality, integrity, and authenticity by using two common IoT protocols, namely constrained application protocol (CoAP) and message query telemetry transports (MQTT). This security framework aims to defend sensor data against the security loopholes while it is continuously transmitting over the layers and uses hypertext transfer protocols (HTTPs) for this purpose. As a result, it shields from the breach with a very low ratio of risk. The methodology of this paper focuses on how the security framework of IoT-based real-time health systems is protected under the tiers of CoAP and HTTPs. CoAP works alongside HTTPs and is responsible for providing end-to-end security solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据