4.7 Article

Non-invasive characterization of complex coronary lesions

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-86360-6

关键词

-

资金

  1. Office of the Director, National Institutes of Health [DP5OD019876]
  2. American Heart Association Predoctoral Fellowship
  3. ACM/IEEE-CS George Michael Memorial High Performance Computing Fellowship
  4. U.S. Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Conventional invasive diagnostic imaging techniques are not effective for complex coronary lesions, and a new computational fluid dynamic framework can help differentiate between different types of lesions and guide personalized treatment strategies. Higher endothelial shear stress in complex lesions compared to simple lesions provides important insights into adverse patient outcomes.
Conventional invasive diagnostic imaging techniques do not adequately resolve complex Type B and C coronary lesions, which present unique challenges, require personalized treatment and result in worsened patient outcomes. These lesions are often excluded from large-scale non-invasive clinical trials and there does not exist a validated approach to characterize hemodynamic quantities and guide percutaneous intervention for such lesions. This work identifies key biomarkers that differentiate complex Type B and C lesions from simple Type A lesions by introducing and validating a coronary angiography-based computational fluid dynamic (CFD-CA) framework for intracoronary assessment in complex lesions at ultrahigh resolution. Among 14 patients selected in this study, 7 patients with Type B and C lesions were included in the complex lesion group including ostial, bifurcation, serial lesions and lesion where flow was supplied by collateral bed. Simple lesion group included 7 patients with lesions that were discrete, <10mm long and readily accessible. Intracoronary assessment was performed using CFD-CA framework and validated by comparing to clinically measured pressure-based index, such as FFR. Local pressure, endothelial shear stress (ESS) and velocity profiles were derived for all patients. We validates the accuracy of our CFD-CA framework and report excellent agreement with invasive measurements (n=14,R2=0.6,p=0.0013). Ultra-high resolution achieved by the model enable physiological assessment in complex lesions and quantify hemodynamic metrics in all vessels up to 1mm in diameter. Importantly, we demonstrate that in contrast to traditional pressure-based metrics, there is a significant difference in the intracoronary hemodynamic forces, such as ESS, in complex lesions compared to simple lesions at both resting and hyperemic physiological states [n = 14, p=0.03]. Higher ESS was observed in the complex lesion group (7.0 +/- 4.7 Pa) than in simple lesion group (4.8 +/- 3.6 Pa). Complex coronary lesions have higher ESS compared to simple lesions, such differential hemodynamic evaluation can provide much the needed insight into the increase in adverse outcomes for such patients and has incremental prognostic value over traditional pressure-based indices, such as FFR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据