4.8 Article

Learning with reinforcement prediction errors in a model of the Drosophila mushroom body

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22592-4

关键词

-

资金

  1. EPSRC (Brains on Board project) [EP/P006094/1]
  2. EPSRC [EP/P006094/1] Funding Source: UKRI

向作者/读者索取更多资源

Effective decision making in a changing environment requires accurate predictions about decision outcomes, which in Drosophila is partially orchestrated by the mushroom body where dopamine neurons signal reinforcing stimuli. The authors propose a model where dopaminergic learning signals encode reinforcement prediction errors by utilizing feedback reinforcement predictions from mushroom body output neurons.
Effective decision making in a changing environment demands that accurate predictions are learned about decision outcomes. In Drosophila, such learning is orchestrated in part by the mushroom body, where dopamine neurons signal reinforcing stimuli to modulate plasticity presynaptic to mushroom body output neurons. Building on previous mushroom body models, in which dopamine neurons signal absolute reinforcement, we propose instead that dopamine neurons signal reinforcement prediction errors by utilising feedback reinforcement predictions from output neurons. We formulate plasticity rules that minimise prediction errors, verify that output neurons learn accurate reinforcement predictions in simulations, and postulate connectivity that explains more physiological observations than an experimentally constrained model. The constrained and augmented models reproduce a broad range of conditioning and blocking experiments, and we demonstrate that the absence of blocking does not imply the absence of prediction error dependent learning. Our results provide five predictions that can be tested using established experimental methods. Dopamine neurons in the mushroom body help Drosophila learn to approach rewards and avoid punishments. Here, the authors propose a model in which dopaminergic learning signals encode reinforcement prediction errors by utilising feedback reinforcement predictions from mushroom body output neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据