4.6 Article

Transient reprogramming of postnatal cardiomyocytes to a dedifferentiated state

期刊

PLOS ONE
卷 16, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0251054

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) & Medical Research Council (MRC) Centre for Doctoral Training (CDT) in Regenerative Medicine [EP/L014904/1]

向作者/读者索取更多资源

The study demonstrated that adenoviral delivery of OSKM can induce partial reprogramming of postnatal cardiomyocytes, with enhanced cell cycle activation, but the reprogramming is transient and cardiomyocyte-specific characteristics are spontaneously recovered by day 15 after viral transduction.
In contrast to mammals, lower vertebrates are capable of extraordinary myocardial regeneration thanks to the ability of their cardiomyocytes to undergo transient dedifferentiation and proliferation. Somatic cells can be temporarily reprogrammed to a proliferative, dedifferentiated state through forced expression of Oct3/4, Sox2, Klf4 and c-Myc (OSKM). Here, we aimed to induce transient reprogramming of mammalian cardiomyocytes in vitro utilising an OSKM-encoding non-integrating vector. Reprogramming factor expression in postnatal rat and mouse cardiomyocytes triggered rapid but limited cell dedifferentiation. Concomitantly, a significant increase in cell viability, cell cycle related gene expression and Ki67 positive cells was observed consistent with an enhanced cell cycle activation. The transient nature of this partial reprogramming was confirmed as cardiomyocyte-specific cell morphology, gene expression and contractile activity were spontaneously recovered by day 15 after viral transduction. This study provides the first evidence that adenoviral OSKM delivery can induce partial reprogramming of postnatal cardiomyocytes. Therefore, adenoviral mediated transient reprogramming could be a novel and feasible strategy to recapitulate the regenerative mechanisms of lower vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据