4.4 Article

A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer ? s disease classification

期刊

MAGNETIC RESONANCE IMAGING
卷 78, 期 -, 页码 119-126

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2021.02.001

关键词

Convolutional neural network; Attention mechanism; Early detection; Structural MRI

资金

  1. Shenzhen Overseas High-level Talent Innovation and Entrepreneurship Special Fund (Peacock Plan) [KQTD20180413181834876]
  2. Guangdong grant 'Key technologies for treatment of brain disorders' [2018B030332001]
  3. Guangdong Provincial Key Laboratory for Magnetic Resonance and Multimodality Imaging [2014B030301013]

向作者/读者索取更多资源

The study aimed to develop a new deep learning method for efficient detection or prediction of AD using a densely connected convolution neural network with connection-wise attention mechanism. The proposed method achieved high accuracy in distinguishing AD patients from healthy controls, MCI converters from healthy controls, and MCI converters from non-converters. Deep learning techniques provide a powerful tool for exploring intricate characteristics in MR images, facilitating early diagnosis and prediction of AD.
Purpose: Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. In recent years, machine learning methods have been widely used on analysis of neuroimage for quantitative evaluation and computer-aided diagnosis of AD or prediction on the conversion from mild cognitive impairment (MCI) to AD. In this study, we aimed to develop a new deep learning method to detect or predict AD in an efficient way. Materials and methods: We proposed a densely connected convolution neural network with connection-wise attention mechanism to learn the multi-level features of brain MR images for AD classification. We used the densely connected neural network to extract multi-scale features from pre-processed images, and connection wise attention mechanism was applied to combine connections among features from different layers to hierarchically transform the MR images into more compact high-level features. Furthermore, we extended the convolution operation to 3D to capture the spatial information of MRI. The features extracted from each 3D convolution layer were integrated with features from all preceding layers with different attention, and were finally used for classification. Our method was evaluated on the baseline MRI of 968 subjects from ADNI database to discriminate (1) AD versus healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI converters versus non-converters. Results: The proposed method achieved 97.35% accuracy for distinguishing AD patients from healthy control, 87.82% for MCI converters against healthy control, and 78.79% for MCI converters against non-converters. Compared with some neural networks and methods reported in recent studies, the classification performance of our proposed algorithm was among the top ranks and improved in discriminating MCI subjects who were in high risks of conversion to AD. Conclusions: Deep learning techniques provide a powerful tool to explore minute but intricate characteristics in MR images which may facilitate early diagnosis and prediction of AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Radiology, Nuclear Medicine & Medical Imaging

Metal artifact reduction around cervical spine implant using diffusion tensor imaging at 3T: A phantom study

Slimane Tounekti, Mahdi Alizadeh, Devon Middleton, James S. Harrop, Bassem Hiba, Laura Krisa, Choukri Mekkaoui, Feroze B. Mohamed

Summary: This study proposes and demonstrates a new method combining reduced field-of-view strategy with phase segmented EPI to address geometric distortion in post-operative DTI scans of patients with metal implants. The results show that the new method outperforms traditional techniques in reducing distortion.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

Influence of scan duration on dynamic contrast -enhanced magnetic resonance imaging pharmacokinetic parameters for brain lesions

Silvia Minosse, Eliseo Picchi, Valentina Ferrazzoli, Noemi Pucci, Valerio Da Ros, Raffaella Giocondo, Roberto Floris, Francesco Garaci, Francesca Di Giuliano

Summary: The aim of this study was to investigate the variation of DCE-MRI-derived kinetic parameters in brain tumors as a function of acquisition time. The results showed that K-ep and V-e were time-dependent and required longer scan times to obtain reliable parameter values, while K-trans was time-independent and remained the same in all acquisition times, making it a reliable parameter for short acquisition times.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

On the loss of image contrast in double-inversion-recovery prepared T2*MRI of Intramyocardial hemorrhage

Xingmin Guan, Xinheng Zhang, Hsin-Jung Yang, Rohan Dharmakumar

Summary: This study aims to investigate why DIR-prepared dark-blood T2* weighted images have lower SNR, CNR, and diagnostic accuracy for intramyocardial hemorrhage (IMH) detection compared to non-DIR-prepared bright-blood T2* images. Through phantom and animal studies, it was confirmed that the signal loss on DIR-prepared T2* images mainly originates from spin-relaxation during the DIR preparation. Therefore, when used for IMH detection, extra attention should be paid to the SNR of DIR-prepared dark-blood T2* imaging protocols.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

Myelination of preterm brain networks at adolescence

Beatriz Laureano, Hassna Irzan, Helen OReilly, Sebastian Ourselin, Neil Marlow, Andrew Melbourne

Summary: Prematurity and preterm stressors have significant effects on the development of infants, especially at earlier gestations. While neonatal care advances have reduced preterm mortality rates, disability rates continue to grow in middle-income settings. Imaging the preterm brain using MR technology has improved our understanding of its development and the affected regions and networks. This research aims to support interventions, improve neurodevelopment, and provide accurate prognoses for preterm infants. This study focuses on the fully developed brain of extremely preterm subjects and examines myelin-related biomarkers to assess long-term effects. The findings suggest altered connectivity and cognitive outcomes in the adult preterm brain.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

Compensation of concomitant field effects in double diffusion encoding by means of added oscillating gradients

Julian Rauch, Frederik B. Laun, Peter Bachert, Mark E. Ladd, Tristan A. Kuder

Summary: This study presents a method for reducing concomitant field effects in double diffusion encoding (DDE) sequences by adding oscillating gradient pulses. The modified sequences successfully reduced accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method led to an increase in signal-to-noise ratio (SNR) for phantom and in vivo experiments, supported by simulations.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

AliasNet: Alias artefact suppression network for accelerated phase-encode MRI

Marlon Bran Lorenzana, Shekhar S. Chandra, Feng Liu

Summary: Sparse reconstruction is important in MRI for reducing acquisition time and improving spatial-temporal resolution. This paper introduces two decoupling techniques for explicit 1D regularization and a combined 1D + 2D reconstruction technique that improves image quality.

MAGNETIC RESONANCE IMAGING (2024)

Article Radiology, Nuclear Medicine & Medical Imaging

Automatic Rejection based on Tissue Signal (ARTS) for motion-corrected quantification of cerebral venous oxygenation in neonates and older adults

Yifan Gou, W. Christopher Golden, Zixuan Lin, Jennifer Shepard, Aylin Tekes, Zhiyi Hu, Xin Li, Kumiko Oishi, Marilyn Albert, Hanzhang Lu, Peiying Liu, Dengrong Jiang

Summary: ARTS algorithm improves the reliability of Y-v estimation in noncompliant subjects, enhancing the utility of Y-v as a biomarker for brain diseases.

MAGNETIC RESONANCE IMAGING (2024)