4.7 Article

Effects of residue removal and tillage on greenhouse gas emissions in continuous corn systems as simulated with RZWQM2

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 285, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112097

关键词

Carbon dioxide; Nitrous oxide; Conservation management practices; Stover residue retention; Tillage; RZWQM2

资金

  1. National Natural Science Foundation of China [51809226]
  2. China Postdoctoral Science Foundation [2018M632390]
  3. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [18KJB610022]

向作者/读者索取更多资源

This study investigated the effects of different residue and tillage practices on soil CO2 and N2O emissions using the Root Zone Water Quality Model (RZWQM2). The results showed that residue and tillage practices had cumulative effects on CO2 emissions over the long term, but not on N2O emissions. The study demonstrated that the RZWQM2 is a valuable tool for evaluating the long-term impacts of conservation practices on CO2 and N2O emissions.
Agricultural production is a major source of carbon dioxide (CO2) and nitrous oxide (N2O) globally. The effects of conservation practices on soil CO2 and N2O emissions remain a high degree of uncertainty. In this study, soil CO2 and N2O emissions under different residue and tillage practices in an irrigated, continuous corn system, were investigated using the Root Zone Water Quality Model (RZWQM2). Combinations of no/high stover removal (NR and HR, respectively) and no-till/conventional tillage (NT and CT, respectively) field experiments were tested over the four crop-years (Apr. 2011-Apr. 2015). The model was calibrated using the NRCT, and validated with other treatments. The simulation results showed that soil volumetric water content (VWC) in the NR treatments (i.e., NRCT and NRNT) was 1.3%-1.9% higher than that in the HR treatments (i.e., HRCT and HRNT) averaged across the four years. A higher amount of CO2 and N2O emissions were simulated in the NRCT across the four years (annual average: 7034 kg C/ha/yr for CO2 and 3.8 kg N/ha/yr for N2O), and lower emissions were in the HRNT (annual average: 6329 kg C/ha/yr and 3.7 kg N/ha/yr for N2O). A long-term simulation (2001-2015) suggested that the CO2 and N2O emissions were closely correlated with the stover removal degree (SRD), tillage, VWC, soil temperature (ST), years in management (Y), and fertilizer application. Stover and tillage practices had cumulative effects on CO2 emissions. The simulated annual CO2 emissions in 1st year from NRCT, NRNT, and HRCT were 7.8%, 0.0%, and 7.7% higher than that from HRNT, respectively; then the emissions in 15th year were 63.6%, 47.7%, and 29.1% higher, respectively. Meanwhile, there were no cumulative effects on N2O emissions. The results also demonstrated that the RZWQM2 is a promising tool for evaluating the long-term effects of CO2 and N2O emissions on different conservation practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据