4.4 Article

3-D FEM Modeling of the Superconducting EDS Train With Cross-Connected Figure-Eight-Shaped Suspension Coils

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2021.3050180

关键词

Superconducting magnets; Coils; Magnetic flux; Magnetic domains; Magnetic fields; Magnetic circuits; Finite element analysis; Electromagnetic forces; figure-eight-shaped suspension coils; finite element method (FEM); REBCO magnets; superconducting electrodynamic suspension (EDS)

资金

  1. National Natural Science Foundation of China [51722706, 51707164, 52037008]
  2. Science& Technology Department of Sichuan Province [2020ZYD010, 2020YFG0354]

向作者/读者索取更多资源

An efficient 3-D finite element method (FEM) model for the EDS train has been established without the need for mutual inductance information, and the electromagnetic behaviors of the train under various conditions have been investigated using the validated model.
Superconducting electrodynamic suspension (EDS) train has become a suitable candidate for the future ultra-high-speed ground transportation because of its unique advantages of self-stability suspension and guidance performances, large suspension gap, and high suspension/drag ratio. It is indispensable to develop an efficient electromagnetic modeling method for the EDS train. An analytical model based on the dynamic-circuit theory and virtual displacement method has been proposed, but it has to know exactly the mutual inductance between the on-board magnet and ground suspension coil before calculating the induced current and electromagnetic force. Thus, this article is to establish an efficient 3-D finite element method (FEM) model for the EDS train, in which the mutual inductance is not required. First, the critical current of the REBCO magnet serving as the on-board magnet of the EDS train is estimated. Second, based on the vector magnetic potential method and circuit principle, the 3-D FEM model of the EDS train is established with the magnetic potential boundary condition employed to avoid the moving mesh of on-board magnet. Third, the 3-D FEM model is validated by comparing the analytical results as well as the published measurement data. Finally, the electromagnetic behaviors of EDS train under the guidance offset and suspension offset conditions are investigated with the validated 3-D FEM model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据