4.7 Article

Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management

期刊

EUROPEAN HEART JOURNAL
卷 38, 期 27, 页码 2132-2136

出版社

OXFORD UNIV PRESS
DOI: 10.1093/eurheartj/ehw574

关键词

Ventricular arrhythmias; Optogenetics; Anti-arrhythmic; Gene Therapy; Adeno-associated virus vector; Channelrhodopsin

资金

  1. Netherlands Organization for Scientific Research (NWO, Vidi grant) [91714336]
  2. Netherlands Heart Institute (ICIN) [230.148-04]

向作者/读者索取更多资源

Aims Current treatments of ventricular arrhythmias rely on modulation of cardiac electrical function through drugs, ablation or electroshocks, which are all non-biological and rather unspecific, irreversible or traumatizing interventions. Optogenetics, however, is a novel, biological technique allowing electrical modulation in a specific, reversible and trauma-free manner using light-gated ion channels. The aim of our study was to investigate optogenetic termination of ventricular arrhythmias in the whole heart. Methods and results Systemic delivery of cardiotropic adeno-associated virus vectors, encoding the light-gated depolarizing ion channel red-activatable channelrhodopsin (ReaChR), resulted in global cardiomyocyte-restricted transgene expression in adult Wistar rat hearts allowing ReaChR-mediated depolarization and pacing. Next, ventricular tachyarrhythmias (VTs) were induced in the optogenetically modified hearts by burst pacing in a Langendorff setup, followed by programmed, local epicardial illumination. A single 470-nm light pulse (1000 ms, 2.97 mW/mm(2)) terminated 97% of monomorphic and 57% of polymorphic VTs vs. 0% without illumination, as assessed by electrocardiogram recordings. Optical mapping showed significant prolongation of voltage signals just before arrhythmia termination. Pharmacological action potential duration (APD) shortening almost fully inhibited light-induced arrhythmia termination indicating an important role for APD in this process. Conclusion Brief local epicardial illumination of the optogenetically modified adult rat heart allows contact-and shock-free termination of ventricular arrhythmias in an effective and repetitive manner after optogenetic modification. These findings could lay the basis for the development of fundamentally new and biological options for cardiac arrhythmia management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据