4.7 Article

Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion

期刊

FUEL PROCESSING TECHNOLOGY
卷 215, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fuproc.2021.106743

关键词

Chemical looping combustion; Oxygen carrier; Manganese ore; Biomass solid fuels; Fluidised bed attrition

资金

  1. Swedish Energy Agency [P43936-1]

向作者/读者索取更多资源

Testing a new manganese ore as oxygen carrier in Chemical Looping Combustion (CLC) with different biomass fuels showed high reactivity and low oxygen demand. Controlling temperature, solids circulation, and fuel power can improve carbon capture efficiency in the experiment.
Finding a suitable oxygen carrier is crucial for the development of Chemical Looping Combustion (CLC). A new manganese ore was tested with different biomass fuels in a recently commissioned 10 kWth unit. The ore maintains the capability of generating O-2 gas in N-2 after continuous operations with the fuels, however, the concentration was relatively low within 0.45-1.0 vol% at 820 to 975 degrees C. Influence of temperature, solids circulation and fuel power was examined for different fuels. Temperature increase enhances the carbon capture and reduces the oxygen demand, while the solids circulation and fuel power should be carefully controlled. Using biomass char the oxygen demand can be lowered to 2.6% while the carbon capture was close to 99%. The manganese ore showed a higher reactivity than the often-used ilmenite. Thus, a decrease of 8-10% in oxygen demand was achieved by using the manganese ore in comparison to ilmenite. During the 42 h of hot operation, defluidisation was not observed. Based on the analysis of the 35 fine samples collected, the initial attrition after first hours of operation was high, but gradually decreased to a relatively stable value of 0.27 and 0.12 wt%/h for hot and fuel operations, respectively, corresponding a lifetime of 370-830 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Tar characteristics generated from a 10 kWth chemical-looping biomass gasifier using steel converter slag as an oxygen carrier

Fredrik Hildor, Amir H. Soleimanisalim, Martin Seemann, Tobias Mattisson, Henrik Leion

Summary: This study investigates the effect of using steel converter slag as an oxygen-carrying bed material on tar species generated in a dual fluidized bed biomass gasifier. The findings suggest that steel converter slag possesses catalytic properties, resulting in a decreased ratio of heavy tar components compared to ilmenite and sand. Temperature and fuel load have a significant effect on tar generation compared to the circulation and steam ratio.
Article Energy & Fuels

Development of new Mn-based oxygen carriers using MgO and SiO2 as supports for Chemical Looping with Oxygen Uncoupling (CLOU)

Inaki Adanez-Rubio, Tobias Mattisson, Marijke Jacobs, Juan Adanez

Summary: Chemical Looping with Oxygen Uncoupling (CLOU) is a technology that separates the oxygen for fuel combustion using an oxygen carrier in a fuel reactor. This study investigates the behavior of Mn/Mg/Si system as oxygen carriers for CLOU. The most reactive oxygen carriers without Si in the structure were found to be M24Mg76 and M48Mg51. These carriers showed good reactivity and mechanical stability in a batch fluidized bed reactor.
Article Energy & Fuels

Performance of iron sand as an oxygen carrier at high reduction degrees and its potential use for chemical looping gasification

Victor Purnomo, Ivana Stanicic, Daofeng Mei, Amir H. Soleimanisalim, Tobias Mattisson, Magnus Ryden, Henrik Leion

Summary: Iron sand, a by-product of the industry, has a reasonable iron content and low cost. It has been found that iron sand can be used as an oxygen carrier in chemical looping gasification (CLG), with an oxygen transfer capacity lower than ilmenite. Utilizing iron sand leads to higher conversion rates of pine forest residue char to CO and H2 compared to ilmenite. The study also presents novel findings on the crystalline phase transformation of iron sand at different oxidation levels.
Article Chemistry, Applied

Production of aviation fuel with negative emissions via chemical looping gasification of biogenic residues: Full chain process modelling and techno-economic analysis

Muhammad Nauman Saeed, Mohammad Shahrivar, Gajanan Dattarao Surywanshi, Tharun Roshan Kumar, Tobias Mattisson, Amir H. Soleimanisalim

Summary: The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) combined with downstream Fischer-Tropsch (FT) synthesis is a possible way to decarbonize aviation sector. This study models the full chain process of biomass to liquid fuel (BtL) with LD-slag and Ilmenite as oxygen carriers using Aspen Plus software, validates the results with experiments, and conducts a techno-economic analysis of the process.

FUEL PROCESSING TECHNOLOGY (2023)

Article Energy & Fuels

Metal impregnation on steel converter slag as an oxygen carrier

Fredrik Hildor, Tobias Mattisson, Carl Linderholm, Henrik Leion

Summary: This study investigates the effect of adding small amounts of more reactive elements into steel converter slag, which improves its reactivity towards CO and CH4, and increases the conversion rate of benzene.

GREENHOUSE GASES-SCIENCE AND TECHNOLOGY (2023)

Article Agricultural Engineering

Biogas upgrading through calcium looping: Experimental validation and study of CO2 capture

Francisco M. Baena-Moreno, Daofeng Mei, Henrik Leion, David Pallares

Summary: The calcium looping technology is a promising method for CO2 capture and storage. Previous studies have focused on evaluating this technology using combustion flue gas, while little is known about its performance when capturing CO2 from biogas or gases resulting from hydrothermal carbonization. This experimental study assesses the performance of calcium looping for biogas and finds improved CO2-capture performance compared to combustion flue gas.

BIOMASS & BIOENERGY (2023)

Article Energy & Fuels

Improving bio aviation fuel yield from biogenic carbon sources through electrolysis assisted chemical looping gasification

Mohammad Shahrivar, Muhammad Nauman Saeed, Gajanan Dattarao Surywanshi, Tobias Mattisson, Amir H. Soleimanisalim

Summary: The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) of biomass combined with downstream Fischer-Tropsch synthesis is a possible way to decarbonize the aviation sector. To increase carbon utilization and biofuel yield, incorporation of two types of electrolyzers, Polymer Electrolyte Membrane (PEM) and Molten Carbonate Electrolysis Cell (MCEC), for syngas conditioning has been investigated. Techno-economic analysis indicates that syngas conditioning using PEM and MCEC electrolyzers would result in an increase of the annual profit by a factor of 1.4 and 1.7, respectively, when compared to using only WGS reactors.
Article Energy & Fuels

Study of the interaction between a Mn ore and alkali chlorides in chemical looping combustion

Daofeng Mei, Anders Lyngfelt, Henrik Leion, Tobias Mattisson

Summary: Chemical looping combustion (CLC) is a technology that can generate heat and power while capturing CO2. Using biomass in CLC (bio-CLC) allows for negative CO2 emissions. This study investigates the interaction between alkalis in biomass and the process, focusing on charcoal impregnated with alkali chlorides. The results show that impregnation with alkalis improves the gasification rate, with carbonates resulting in earlier and more permanent defluidization compared to chlorides. Partial agglomeration and retention of alkalis in the oxygen carrier are observed, with similar reactivity noticed with CH4 and H2.
Article Green & Sustainable Science & Technology

Investigation of LD-slag as oxygen carrier for CLC in a 10 kW unit using high-volatile biomasses

Daofeng Mei, Ivan Gogolev, Amir H. Soleimanisalim, Anders Lyngfelt, Tobias Mattisson

Summary: The steel slag from the Linz-Donawitz process, known as LD-slag, was investigated as an oxygen carrier in a chemical-looping combustor with biomass fuels. Heat treatment at high temperatures was required to improve operability. The results showed that with LD-slag as the oxygen carrier, a lower oxygen demand could be achieved with high solids circulation.

INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL (2023)

Review Engineering, Environmental

Ash chemistry in chemical looping process for biomass valorization: A review

Yuru Liu, Ke Yin, Jiawei Wu, Daofeng Mei, Jukka Konttinen, Tero Joronen, Zhifeng Hub, Chao He

Summary: This review systematically analyzes the impact of ash compositions on the oxygen carrier in the chemical looping process (CLP), providing insights into the agglomeration and melting process caused by ash deposition. Strategies are proposed to mitigate the adverse effects of ash and recycle useful metals.

CHEMICAL ENGINEERING JOURNAL (2023)

Correction Chemistry, Applied

Technical analysis of blending fusel to reduce carbon emission and pollution emission of diesel engine (vol 241, 107560, 2023)

Jia Liu, Juntong Dong, Xiaodan Li, Teng Xu, Zhenguo Li, Jeffrey Dankwa Ampah, Mubasher Ikram, Shihai Zhang, Chao Jin, Zhenlong Geng, Tianyun Sun, Haifeng Liu

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Understanding the role of Ni-based single-atom alloys on the selective hydrodeoxygenation of bio-oils

Seba Alareeqi, Daniel Bahamon, Kyriaki Polychronopoulou, Lourdes F. Vega

Summary: This study explores the potential application of single-atom-alloy (SAA) catalysts in bio-oils hydrodeoxygenation refining using density functional theory (DFT) and microkinetic modeling. It establishes the relationships between stability, adsorptive properties, and activity structures for bio-oil derivatives, providing guidance for the synthesis of cost-effective SAA combinations.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Experimental and computational study on xylan pyrolysis: The pyrolysis mechanism of main branched monosaccharides

Bin Hu, Wen -Ming Zhang, Xue-Wen Guo, Ji Liu, Xiao Yang, Qiang Lu

Summary: This study explored the pyrolysis behaviors and mechanisms of different monosaccharides, including arabinose, galactose, galacturonic acid, and glucuronic acid. The roles of structural differences in these monosaccharides were analyzed, and it was found that glucuronic acid undergoes a special C-C bond breaking reaction during pyrolysis. The findings provide a deep understanding of the pyrolysis chemistry of hemicellulose and the role of different branches.

FUEL PROCESSING TECHNOLOGY (2024)

Review Chemistry, Applied

A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses

Youwei Zhi, Donghai Xu, Guanyu Jiang, Wanpeng Yang, Zhilin Chen, Peigao Duan, Jie Zhang

Summary: Hydrothermal carbonization (HTC) is an effective method for the harmless disposal of municipal sludge (MS) and offers potential applications for the obtained products. Optimizing reaction conditions, coupling with other waste materials, and combining different processes can improve the performance of HTC. Furthermore, HTC contributes to energy recovery and enhances the quality of life cycle assessment.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

Integrated hydropyrolysis and vapor-phase hydrodeoxygenation process with Pd/Al2O3 for production of advanced oxygen-containing biofuels from cellulosic wastes

Jia Wang, Jianchun Jiang, Dongxian Li, Xianzhi Meng, Arthur J. Ragauskas

Summary: This study presents a scalable process for converting holocellulose and cellulosic wastes into advanced oxygen-containing biofuels with high furan, cyclic ketone, and ethanol content. By combining hydropyrolysis and vapor-phase hydrodeoxygenation using Pd/Al2O3 as a catalyst, the researchers achieved high yields and conversions. The integrated process holds great promise for biomass waste conversion into advanced biofuels.

FUEL PROCESSING TECHNOLOGY (2024)

Article Chemistry, Applied

A 3D computational study of the formation, growth and oxidation of soot particles in an optically accessible direct-injection spark-ignition engine using quadrature-based methods of moments

Florian Held, Jannis Reusch, Steffen Salenbauch, Christian Hasse

Summary: The accurate prediction and assessment of soot emissions in internal combustion engines are crucial for the development of sustainable powertrains. This study presents a detailed quadrature-based method of moments (QMOM) soot model coupled with a state-of-the-art flow solver for the simulation of gasoline engines. The model accurately describes the entire cause-and-effect chain of soot formation, growth and oxidation. Experimental validation and engine cycle simulations are used to identify the root cause of observed soot formation hotspots.

FUEL PROCESSING TECHNOLOGY (2024)