4.7 Article

High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications

期刊

ENERGY
卷 223, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120031

关键词

Polyvinylidene fluoride; Polyvinyl alcohol; Triboelectric nanogenerator; Self-powered; Power density; Surface modification

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2018R1A6A1A03025708, 2020R1A2B5B01002318]

向作者/读者索取更多资源

This study demonstrated a cost-effective and high-performance TENG using PVDF and MS@PVA polymers as triboelectric materials, achieving maximum peak-to-peak open-circuit voltage of 230V, short-circuit current of 6μA, and instantaneous output power density of 3.1W/m(2).
Triboelectric nanogenerators (TENGs) which are one of the notable renewable energy harvesting devices have been demonstrated for various types of energy harvesting, sensing, and self-powered electronic applications. However, enhancing the electrical output performance by optimizing the TENG parameters and reducing its processing cost is still major issues to be resolved for practical and industrial utilization. Herein, we demonstrated a cost-effective and high-performance TENG using polyvinylidene fluoride (PVDF) and microstructure aligned polyvinyl alcohol (MS@PVA) polymers as negatively and positively polarized triboelectric materials, respectively. The PVDF film developed by a facile and cost-effective ultra-sonication process and its high electroactive beta-phase can be utilized to enhance the electric dipole-dipole interactions in the film, and also lead to an increase in its piezoelectric coefficient. Besides, the PVA film was produced by a simple solidification method and the microstructures on its surface are developed by merely corresponding inverse patterns on commercially available sandpaper. The resultant TENG with the PVDF and MS@PVA polymers exhibited maximum peak-to-peak open-circuit voltage, short-circuit current, and instantaneous output power density values of 230 V, 6 mu A, and 3.1 W/m(2), respectively. Ultimately, such a high electrical output generated by the TENG was employed to drive portable electronic devices such as displays and light-emitting diodes. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据