4.7 Article

Degradation of aniline by ferrous ions activated persulfate: Impacts, mechanisms, and by-products

期刊

CHEMOSPHERE
卷 268, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129237

关键词

Persulfate; Sulfate radical; Aniline; Optimal operating conditions; Mechanism; Chlorinated by-product

资金

  1. National Science and Technology Major Project of Water Pollution Control and Treatment [2017ZX07107-005]

向作者/读者索取更多资源

This study investigated the removal rate and mechanism of aniline by sulfate radical-based advanced oxidation processes under different influencing factors. Results showed that factors such as persulfate and ferrous ions dosage, solution pH, and the presence of Cl-, HCO3-, and NO3- all influenced the aniline degradation process. The study provides valuable insights for developing processes for aniline degradation in wastewater treatment.
Wastewater contains a large number of anions and organics which can scavenge reactive radicals and limit the application of sulfate radical-based advanced oxidation processes (SR-AOPs) in practical engineering. Here, we studied the removal rate and mechanism of aniline by SR-AOPs in different influencing factors, such as sodium persulfate dosage, ferrous ions dosage, solution pH, Cl-, HCO3-, NO3-, and other organic matter. By recognizing and analyzing free radicals, we concluded that SO4 center dot- plays a major role in aniline degradation. The aniline removal rate increased with the initial concentrations of persulfate and ferrous ions, but aniline degradation was inhibited by excessive dosage. The aniline removal rate by ferrous-ions-catalyzed persulfate was higher under acidic conditions and could be improved under alkaline conditions if no ferrous ions were added. The addition of bicarbonate ions inhibited aniline removal, and the addition of nitrate ions barely caused the effect. While the addition of chloride ions promoted aniline degradation, which was confirmed that HClO generated from the reacting of Cl- and persulfate played a key role. However, TOC indicated that aniline was not completely mineralized in the process. Further analysis of the products from GC-MS demonstrated that chloride-ion additions produced some harmful halogenated by-products. Our results can act as a basis for developing processes for the aniline degradation in wastewater. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据