4.7 Article

Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate

期刊

CHEMOSPHERE
卷 280, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130937

关键词

Internal circulation anaerobic reactor; Nitrate inhibition; Sulfate reduction; Kinetics models; PICRUSt2 analysis; Metabolism function

资金

  1. National Natural Science Foundation of China [51978328]
  2. Basic Research Program of Jiangsu Province [BK20170642]

向作者/读者索取更多资源

Nitrate has a significant negative impact on sulfate reduction, but can improve the removal efficiency of nitrate and COD in organic wastewater. The addition of nitrate promotes the degradation of propionate and butyrate, and triggers a shift in microbial community and function.
Nitrate and sulfate often coexist in organic wastewater. In this study, an internal circulation anaerobic reactor was conducted to investigate the impact of nitrate on sulfate reduction. The results showed that sulfate reduction rate dropped from 78.4% to 41.4% at NO3-/SO42- ratios ranging from 0 to 1.03, largely attributed to the inactivity of acetate-utilizing sulfate-reducing bacteria (SRB) and preferential usage of nitrate of propionate-utilizing SRB. Meanwhile, high nitrate removal efficiency was maintained and COD removal efficiency increased with nitrate addition. Enhancement of propionate and butyrate degradation based on Modified Gompertz model and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis. Moreover, nitrate triggered the shift of microbial community and function. Twelve genera affiliated to Firmi-cutes, Bacteroidetes and Proteobacteria were identified as keystone genera via network analysis, which kept functional stability of the bacterial community responding to nitrate stress. Increased nitrate inhibited Desulfovibrio, but promoted the growth of Desulforhabdus. Both the predicted functional genes associated with assimilatory sulfate reduction pathway (cysC and cysNC) and dissimilatory sulfate reduction pathway (aprA, aprB, dsrA and dsrB) exhibited negative relationship with nitrate addition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据