4.7 Article

Fabrication of MOF-derivated CuOx-C electrode for electrochemical degradation of ceftazidime from aqueous solution

期刊

CHEMOSPHERE
卷 268, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129157

关键词

Anodic oxidation; Metal-organic framework; CuOx-C anode; Ceftazidime; Degradation mechanism

资金

  1. National Natural Science Foundation of China [51978030]

向作者/读者索取更多资源

This study compared the physicochemical and electrochemical properties of a series of porous copper oxide carbon materials, showing that CuOx-C-550 N has a good multiscale pore structure and enhanced electrochemical ability for the efficient degradation of ceftazidime. The study provides a good method for the design and preparation of a new MOF derivative for the remediation of aquatic contamination.
Antibiotic contamination has already been one of hazards to aquatic environment due to the abuse of antibiotics. Metal-organic frameworks (MOFs) are known as a kind of promising porous material for solving the environmental deterioration. In this article, the physicochemical and electrochemical properties of a series of porous copper oxide carbon materials (CuOx-C) synthesized by carbonizing Cu-BTC were compared. Due to the suitable carbonization temperature, CuOx-C-550 N, whose geometric structure was similar to Cu-BTC, possessed a multiscale pore structure containing many mesopores and partial macropores in accordance with the pore size distribution curves. More copper/copper oxides were introduced toimproving the electrochemical ability, evidence by XRD, XPS, CV and EIS characterization. Moreover, the degradation of ceftazidime (CAZ) through anodic oxidation was discussed. In AO/CuOx-C-550 N system, the effects of current, solution pH, initial CAZ concentration and Na2SO4 concentration were analyzed. CAZ removal rate reached 100% within 20 min under the optimal condition and a good electrocatalytic ability with 90% CAZ removal after 20 runs indicated a good electrochemical stability of CuOx-C-550 N. Furthermore, the degradation mechanism and pathway of CAZ were proposed. The Cu(II)/Cu(l) oxidation-reduction couples on the anodic surface contribute to the efficiently selective degradation of cephalosporins for CuOx-C-550 N. Overall, this study shows a good method to design and prepare a new MOF derivative for the remediation of aquatic contamination. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据