4.7 Article

Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses

期刊

BMC PLANT BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-021-02937-3

关键词

Halotolerant PGPR; Salinity stress; Phytohormones; Antioxidants; Gene expression; Soybean

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2017R1D1A1B04035601]
  2. National Research Foundation of Korea [4199991014444] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, rhizobacteria with plant growth-promoting traits were isolated, among which ALT29 and ALT43 showed the highest tolerance to salinity stress. Inoculation with these bacteria significantly improved soybean growth under salt stress, enhancing plant growth parameters and reducing stress-related physiological indicators.
Background Salinity is a major threat to the agriculture industry due to the negative impact of salinity stress on crop productivity. In the present study, we isolated rhizobacteria and evaluated their capacities to promote crop growth under salt stress conditions. Results We isolated rhizospheric bacteria from sand dune flora of Pohang beach, Korea, and screened them for plant growth-promoting (PGP) traits. Among 55 bacterial isolates, 14 produced indole-3-acetic acid (IAA), 10 produced siderophores, and 12 produced extracellular polymeric and phosphate solubilization. Based on these PGP traits, we selected 11 isolates to assess for salinity tolerance. Among them, ALT29 and ALT43 showed the highest tolerance to salinity stress. Next, we tested the culture filtrate of isolates ALT29 and ALT43 for IAA and organic acids to confirm the presence of these PGP products. To investigate the effects of ALT29 and ALT43 on salt tolerance in soybean, we grew seedlings in 0 mM, 80 mM, 160 mM, and 240 mM NaCl treatments, inoculating half with the bacterial isolates. Inoculation with ALT29 and ALT43 significantly increased shoot length (13%), root length (21%), shoot fresh and dry weight (44 and 35%), root fresh and dry weight (9%), chlorophyll content (16-24%), Chl a (8-43%), Chl b (13-46%), and carotenoid (14-39%) content of soybean grown under salt stress. Inoculation with ALT29 and ALT43 also significantly decreased endogenous ABA levels (0.77-fold) and increased endogenous SA contents (6-16%), increased total protein (10-20%) and glutathione contents, and reduced lipid peroxidation (0.8-5-fold), superoxide anion (21-68%), peroxidase (12.14-17.97%), and polyphenol oxidase (11.76-27.06%) contents in soybean under salinity stress. In addition, soybean treated with ALT29 and ALT43 exhibited higher K+ uptake (9.34-67.03%) and reduced Na+ content (2-4.5-fold). Genes involved in salt tolerance, GmFLD19 and GmNARK, were upregulated under NaCl stress; however, significant decreases in GmFLD19 (3-12-fold) and GmNARK (1.8-3.7-fold) expression were observed in bacterial inoculated plants. Conclusion In conclusion, bacterial isolates ALT29 and ALT43 can mitigate salinity stress and increase plant growth, providing an eco-friendly approach for addressing saline conditions in agricultural production systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据