4.7 Article

Numerical study of scale effects on self-heating ignition of lithium-ion batteries stored in boxes, shelves and racks

期刊

APPLIED THERMAL ENGINEERING
卷 190, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.116780

关键词

Fire; Lithium-ion battery; Thermal runaway; Safety; Self-heating ignition; Heat transfer

资金

  1. China Scholarship Council (CSC)
  2. President's PhD Scholarship Scheme of Imperial College London

向作者/读者索取更多资源

This study discusses the risk of self-heating ignition in large-scale stored Lithium-ion batteries (LIBs), highlighting the potential fire hazards posed by spontaneous side reactions and the lower critical ambient temperature for ignition in large LIB ensembles. The research provides insights into the fire safety of Li-ion batteries and emphasizes the importance of considering size and heat transfer effects in LIB ignition to prevent potential fire incidents during storage and transport.
The fire safety of Lithium-ion batteries (LIBs) during their storage and transport is becoming of prime importance for the industry, with a number of such fires reported in recent years. It is crucial to understand the mechanisms and causes of these fires to provide insights for prevention. Previous studies mostly focused on small ensembles with a few cells and the chemistry involved. The possibility of ignition resulting from heat transfer within a large-size ensemble of LIBs had received little attention before. Focusing on the fire safety of large-scale stored LIBs, we discuss the risk and likelihood of self-heating ignition, which is a known cause of fires in other industries (e.g. chemical storage). Taking LiCoO2 type of battery as a base case and using its chemical kinetics reported in the literature, we build a transient heat transfer model with multi-step reactions to analyze the self-heating behaviour of ensembles of LIBs. Four typical storage sizes, from a single cell to racks containing around 2 million cells, are simulated using COMSOL Multiphysics. The results show that the critical ambient temperature for self-heating ignition is significantly lower for a large-scale LIB ensemble (e.g. 60 degrees C for the rack), indicating spontaneous side reactions are not negligible heat sources in large LIB ensembles and self-heating poses potential fire hazards in storage. Effects of size and heat transfer in LIB ignition should therefore not be ignored. This work provides insights into the fire safety of Li-ion batteries and additional means of protection during storage and transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据