4.7 Article

Assessing the Bioactive Profile of Antifungal-Loaded Calcium Sulfate against Fungal Biofilms

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02551-20

关键词

biofilm; fungal; wound management; antimicrobial agents; Candida; joint infections

资金

  1. Biocomposites

向作者/读者索取更多资源

The study showed that antifungal-loaded CS beads effectively inhibit pathogenic fungi growth within 7 days, reducing biofilm formation and providing sustained antimicrobial effect against clinically relevant fungal species.
Calcium sulfate (CS) has been used clinically as a bone- or void-filling biomaterial, and its resorptive properties have provided the prospect for its use as a release mechanism for local antibiotics to control biofilms. Here, we aimed to test CS beads loaded with three antifungal drugs against planktonic and sessile fungal species to assess whether these antifungal beads could be harnessed to provide consistent release of antifungals at biofilm-inhibitory doses. A panel of different fungal species (n=15) were selected for planktonic broth microdilution testing with fluconazole (FLZ), amphotericin B (AMB), and caspofungin (CSP). After establishing planktonic inhibition, antifungal CS beads were introduced to fungal biofilms (n = 5) to assess biofilm formation and cell viability through a combination of standard quantitative and qualitative biofilm assays. Inoculation of a hydrogel substrate, packed with antifungal CS beads, was also used to assess diffusion through a semidry material, to mimic active infection in vivo. In general, antifungals released from loaded CS beads were all effective at inhibiting the pathogenic fungi over 7 days within standard MIC ranges for these fungi. We observed a significant reduction of pregrown fungal biofilms across key fungal pathogens following treatment, with visually observable changes in cell morphology and biofilm coverage provided by scanning electron microscopy. Assessment of biofilm inhibition also revealed reductions in total and viable cells across all organisms tested. These data show that antifungal-loaded CS beads produce a sustained antimicrobial effect that inhibits and kills clinically relevant fungal species in vitro as planktonic and biofilm cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据