4.7 Article

Submesoscale Mixing Across the Mixed Layer in the Gulf of Mexico

期刊

FRONTIERS IN MARINE SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2021.615066

关键词

submesoscale; Gulf of Mexico; vertical transport; mixed layer mixing; eddy

资金

  1. Gulf of Mexico Research Initiative through the ECOGIG consortium
  2. National Science Foundation [OCE1658174]

向作者/读者索取更多资源

Submesoscale circulations play a significant role in the vertical transport of neutrally buoyant particles in the northern Gulf of Mexico. The influence of submesoscale dynamics is greater in winter compared to other seasons, with upwelling into the mixed layer being a major contributor to vertical fluxes in the large mesoscale eddies. The distribution of diffusivities varies in different regions of the Gulf, with higher values in the eastern portion where submesoscale circulations are more intense.
Submesoscale circulations influence momentum, buoyancy and transport of biological tracers and pollutants within the upper turbulent layer. How much and how far into the water column this influence extends remain open questions in most of the global ocean. This work evaluates the behavior of neutrally buoyant particles advected in simulations of the northern Gulf of Mexico by analyzing the trajectories of Lagrangian particles released multiple times at the ocean surface and below the mixed layer. The relative role of meso-and submesoscale dynamics is quantified by comparing results in submesoscale permitting and mesoscale resolving simulations. Submesoscale circulations are responsible for greater vertical transport across fixed depth ranges and also across the mixed layer, both into it and away from it, in all seasons. The significance of the submesoscale-induced transport, however, is far greater in winter. In this season, a kernel density estimation and a detailed vertical mixing analysis are performed. It is found that in the large mesoscale Loop Current eddy, upwelling into the mixed layer is the major contributor to the vertical fluxes, despite its clockwise circulation. This is opposite to the behavior simulated in the mesoscale resolving case. In the submesoscale soup away from the large mesoscale structures such as the Loop Current and its detached eddies, upwelling into the mixed layer is distributed more uniformly than downwelling motions from the surface across the base of the mixed layer. Maps of vertical diffusivity indicate that there is an order of magnitude difference among simulations. In the submesoscale permitting case values are distributed around 10(-3) m(2) s(-1) in the upper water column in winter, in agreement with recent indirect estimates off the Chilean coast. Diffusivities are greater in the eastern portion of the Gulf, where the submesoscale circulations are more intense due to sustained density gradients supplied by the warmer and saltier Loop Current. Superscript/Subscript Available

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据