4.8 Article

Early Life Intervention Using Probiotic Clostridium butyricum Improves Intestinal Development, Immune Response, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae

期刊

FRONTIERS IN IMMUNOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2021.640767

关键词

Clostridium butyricum; marine fish larvae; early life intervention; intestinal development; immune response; gut microbiota

资金

  1. Agriculture Research System of China [CARS-47-11]
  2. National Science Fund for Distinguished Young Scholars of China [31525024]
  3. Key Program of National Natural Science Foundation of China [31830103]

向作者/读者索取更多资源

Marine fish larvae are vulnerable during the early life period, but early intervention using probiotics, specifically Clostridium butyricum (CB), can improve growth performance, intestinal development, immune response, and gut microbiota. The study showed that CB supplementation in larval diets led to increased final length, weight, specific growth rate, and immune enzyme activities, as well as altered gut microbiota composition. Overall, the results suggest that early life intervention with 0.10-0.20% CB can promote growth of large yellow croaker larvae by enhancing intestinal development, immune responses, and modulating gut microbiota.
Marine fish larvae are vulnerable during the early life period. The early intervention using probiotics may be a promising method to improve growth of fish larvae. In this study, a 30-day feeding trial was conducted to evaluate the effects of early life intervention using probiotic Clostridium butyricum (CB) on growth performance, intestinal development, immune response and gut microbiota of large yellow croaker (Larimichthys crocea) larvae. Four isonitrogenous and isolipidic diets were formulated with the supplementation of four different levels of CB (5 x 10(9) CFU g(-1)), 0.00% (Control), 0.10% (CB1), 0.20% (CB2), and 0.40% (CB3). Results showed that larvae fed diets with CB had significant higher final length than the control group. Meanwhile, larvae fed the diet with 0.10% CB had significant higher final weight and specific growth rate (SGR) than the control group. However, no significant difference in survival rate was observed among dietary treatments. CB supplementation significantly increased the height of intestinal villus and the length of intestinal enterocyte. Similarly, CB supplementation significantly increased the expression of tight zonula occludens-2 (zo-2) and ornithine decarboxylase (odc) than the control group. Larvae fed the diet with 0.20% CB had significant higher lipase and leucine-aminopeptidase (LAP) activity than the control group. Moreover, CB supplementation significantly improved immune enzyme activities than the control group. Sequencing of bacterial 16S rRNA V4-5 region indicated that dietary CB altered intestinal microbiota profile and decreased intestinal microbial diversities of larvae. CB supplementation could effectively increase the abundance of CB, and decrease the abundance of some potential pathogenic bacteria in larval gut. These results revealed that early life intervention using 0.10-0.20% CB could promote growth of large yellow croaker larvae probably through promoting intestinal development, improving immune enzyme activities and modulating gut microbiota.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据