4.7 Article

Spatio-temporal ozone variation in a case-crossover analysis of childhood asthma hospital visits in New York City

期刊

ENVIRONMENTAL RESEARCH
卷 147, 期 -, 页码 108-114

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2016.01.020

关键词

Case-crossover; Childhood asthma; Intraurban variation; Ozone; Spatio-temporal

资金

  1. US NIH (NIEHS) [R21ES021429, R01ES019955, K23ES024127]
  2. US EPA Grant [RD-83457601-0]

向作者/读者索取更多资源

Background: Childhood asthma morbidity has been associated with short-term air pollution exposure. To date, most investigations have used time-series models, and it is not well understood how exposure misclassification arising from unmeasured spatial variation may impact epidemiological effect estimates. Here, we develop case-crossover models integrating temporal and spatial individual-level exposure information, toward reducing exposure misclassification in estimating associations between air pollution and child asthma exacerbations in New York City (NYC). Methods: Air pollution data included: (a) highly spatially-resolved intra-urban concentration surfaces for ozone and co-pollutants (nitrogen dioxide and fine particulate matter) from the New York City Community Air Survey (NYCCAS), and (b) daily regulatory monitoring data. Case data included citywide hospital records for years 2005-2011 warm-season (June-August) asthma hospitalizations (n=2353) and Emergency Department (ED) visits (n=11,719) among children aged 5-17 years. Case residential locations were geocoded using a multi-step process to maximize positional accuracy and precision in near residence exposure estimates. We used conditional logistic regression to model associations between ozone and child asthma exacerbations for lag days 0-6, adjusting for co-pollutant and temperature exposures. To evaluate the effect of increased exposure specificity through spatial air pollution information, we sequentially incorporated spatial variation into daily exposure estimates for ozone, temperature, and co-pollutants. Results: Percent excess risk per 10 ppb ozone exposure in spatio-temporal models were significant on lag days 1 through 5, ranging from 6.5 (95% CI: 0.2-13.1) to 13.0 (6.0-20.6) for inpatient hospitalizations, and from 2.9(95% Cl: 0.1-5.7) to 9.4(6.3-12.7) for ED visits, with strongest associations consistently observed on lag day 2. Spatio-temporal excess risk estimates were consistently but not statistically significantly higher than temporal-only estimates on lag days 0-3. Conclusion: Incorporating case-level spatial exposure variation produced small, non-significant increases in excess risk estimates. Our modeling approach enables a refined understanding of potential measurement error in temporal-only versus spatio-temporal air pollution exposure assessments. As ozone generally varies over much larger spatial scales than that observed within NYC, further work is necessary to evaluate potential reductions in exposure misclassification for populations spanning wider geographic areas, and for other pollutants. (C) 2016 The Authors. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据